Yonghyun Nam, Dong-Gi Lee, Jakob Woerner, Se-Hwan Lee, Min Ji Lee, Sung-Han Jo, Jaeun Jung, Su Chin Heo, Chris Hyunchul Jo, Dokyoon Kim
{"title":"Phenome-wide comorbidity network analysis reveals clinical risk patterns in enthesopathy and enthesitis.","authors":"Yonghyun Nam, Dong-Gi Lee, Jakob Woerner, Se-Hwan Lee, Min Ji Lee, Sung-Han Jo, Jaeun Jung, Su Chin Heo, Chris Hyunchul Jo, Dokyoon Kim","doi":"10.1101/2025.04.21.25326169","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enthesopathy and enthesitis, including rotator cuff disease and other tendon disorders, represent a heterogeneous group of musculoskeletal conditions with complex etiologies. Understanding how systemic health profiles influence their onset remains a critical challenge in musculoskeletal medicine.</p><p><strong>Methods: </strong>We conducted a large-scale, phenome-wide comorbidity analysis using longitudinal electronic health records (EHR) from 432,757 UK Biobank participants. Incident cases of peripheral enthesopathies were compared to controls across 434 baseline disease phenotypes. A directed ego network was constructed to link significantly associated comorbidities to the target condition using odds ratio-based associations. Unsupervised clustering via UMAP and DBSCAN identified data-driven comorbidity clusters, which were consolidated into unified endotypes-interpreted as distinct systemic profiles contributing to disease risk. Additionally, metapath-based trajectory analysis was applied to uncover temporally structured multimorbidity chains leading to disease onset.</p><p><strong>Results: </strong>We identified 183 baseline conditions significantly associated with the future development of enthesopathy (FDR < 0.05). Network clustering revealed eight comorbidity clusters, which were consolidated into four unified endotypes: Metabolic-Psychosomatic, Inflammatory-Multisystem, Mechanical-Injury-driven, and Aging-Intervention-related. Metapath analysis uncovered common three-step disease trajectories, such as metabolic-infectious-musculoskeletal and inflammatory skin-to-joint progressions, highlighting potential mechanistic pathways. These endotypes showed diverse clinical features but shared biological coherence, suggesting that different systemic health profiles can converge to drive tendon-related disease.</p><p><strong>Conclusions: </strong>This study introduces a scalable framework for identifying systemic multimorbidity patterns underlying enthesopathy and enthesitis using phenome-wide comorbidity networks. By integrating network clustering and metapath analysis, we uncover interpretable, data-driven endotypes that may inform individualized risk assessment and targeted care strategies. These findings contribute to the growing field of biobank-scale disease modeling and offer a foundation for precision approaches in musculoskeletal medicine.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.21.25326169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Enthesopathy and enthesitis, including rotator cuff disease and other tendon disorders, represent a heterogeneous group of musculoskeletal conditions with complex etiologies. Understanding how systemic health profiles influence their onset remains a critical challenge in musculoskeletal medicine.
Methods: We conducted a large-scale, phenome-wide comorbidity analysis using longitudinal electronic health records (EHR) from 432,757 UK Biobank participants. Incident cases of peripheral enthesopathies were compared to controls across 434 baseline disease phenotypes. A directed ego network was constructed to link significantly associated comorbidities to the target condition using odds ratio-based associations. Unsupervised clustering via UMAP and DBSCAN identified data-driven comorbidity clusters, which were consolidated into unified endotypes-interpreted as distinct systemic profiles contributing to disease risk. Additionally, metapath-based trajectory analysis was applied to uncover temporally structured multimorbidity chains leading to disease onset.
Results: We identified 183 baseline conditions significantly associated with the future development of enthesopathy (FDR < 0.05). Network clustering revealed eight comorbidity clusters, which were consolidated into four unified endotypes: Metabolic-Psychosomatic, Inflammatory-Multisystem, Mechanical-Injury-driven, and Aging-Intervention-related. Metapath analysis uncovered common three-step disease trajectories, such as metabolic-infectious-musculoskeletal and inflammatory skin-to-joint progressions, highlighting potential mechanistic pathways. These endotypes showed diverse clinical features but shared biological coherence, suggesting that different systemic health profiles can converge to drive tendon-related disease.
Conclusions: This study introduces a scalable framework for identifying systemic multimorbidity patterns underlying enthesopathy and enthesitis using phenome-wide comorbidity networks. By integrating network clustering and metapath analysis, we uncover interpretable, data-driven endotypes that may inform individualized risk assessment and targeted care strategies. These findings contribute to the growing field of biobank-scale disease modeling and offer a foundation for precision approaches in musculoskeletal medicine.