Limit Laws for Sums of Logarithms of k-Spacings.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-10 DOI:10.3390/e27040411
Paul Deheuvels
{"title":"Limit Laws for Sums of Logarithms of <i>k</i>-Spacings.","authors":"Paul Deheuvels","doi":"10.3390/e27040411","DOIUrl":null,"url":null,"abstract":"<p><p>Let Z=Z1,…,Zn be an i.i.d. sample from the absolutely continuous distribution function F(z):=P(Z≤z), with density f(z):=ddzF(z). Let Z1,n<…<Zn,n be the order statistics generated by Z1,…,Zn. Let Z0,n=a:=inf{z:F(z)>0} and Zn+1,n=b:=sup{z:F(z)<1} denote the end-points of the common distribution of these observations, and assume that the density <i>f</i> is Riemann integrable and bounded away from 0 over each interval [a',b']&sub;(a,b). For a specified k≥1, we establish the asymptotic normality of the sum of logarithms of the <i>k</i>-spacings Zi+k,n-Zi-1,n for i=1,…,n-k+2. Our results complete previous investigations in the literature conducted by Blumenthal, Cressie, Shao and Hahn, and the references therein.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040411","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let Z=Z1,…,Zn be an i.i.d. sample from the absolutely continuous distribution function F(z):=P(Z≤z), with density f(z):=ddzF(z). Let Z1,n<…0} and Zn+1,n=b:=sup{z:F(z)<1} denote the end-points of the common distribution of these observations, and assume that the density f is Riemann integrable and bounded away from 0 over each interval [a',b']⊂(a,b). For a specified k≥1, we establish the asymptotic normality of the sum of logarithms of the k-spacings Zi+k,n-Zi-1,n for i=1,…,n-k+2. Our results complete previous investigations in the literature conducted by Blumenthal, Cressie, Shao and Hahn, and the references therein.

k-间隔的对数和的极限律。
设Z=Z1,…,Zn为绝对连续分布函数F(Z):=P(Z≤Z)的i.i.d样本,密度F(Z):=ddzF(Z)。设Z1,n0}和Zn+1,n=b:=sup{z:F(z) F是黎曼可积的并且在每个区间[a',b']⊂(a,b)上离0有界。对于k≥1,我们建立了k-间隔Zi+k,n-Zi-1,n对于i=1,…,n-k+2的对数和的渐近正态性。我们的结果完成了Blumenthal, Cressie, Shao和Hahn先前的文献调查,以及其中的参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信