Javier Alejandro Delgado-Nungaray, Luis Joel Figueroa-Yáñez, Eire Reynaga-Delgado, Mario Alberto García-Ramírez, Karla Esperanza Aguilar-Corona, Orfil Gonzalez-Reynoso
{"title":"Influence of Amino Acids on Quorum Sensing-Related Pathways in <i>Pseudomonas aeruginosa</i> PAO1: Insights from the GEM iJD1249.","authors":"Javier Alejandro Delgado-Nungaray, Luis Joel Figueroa-Yáñez, Eire Reynaga-Delgado, Mario Alberto García-Ramírez, Karla Esperanza Aguilar-Corona, Orfil Gonzalez-Reynoso","doi":"10.3390/metabo15040236","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Amino acids (AAs) play a critical role in diseases such as cystic fibrosis where <i>Pseudomonas aeruginosa</i> PAO1 adapts its metabolism in response to host-derived nutrients. The adaptation influences virulence and complicates antibiotic treatment mainly for the antimicrobial resistance context. D- and L-AAs have been analyzed for their impact on quorum sensing (QS), a mechanism that regulates virulence factors. This research aimed to reconstruct the genome-scale metabolic model (GEM) of <i>P. aeruginosa</i> PAO1 to investigate the metabolic roles of D- and L-AAs in QS-related pathways.</p><p><strong>Methods: </strong>The updated GEM, iJD1249, was reconstructed by using protocols to integrate data from previous models and refined with well-standardized in silico media (LB, M9, and SCFM) to improve flux balance analysis accuracy. The model was used to explore the metabolic impact of D-Met, D-Ala, D-Glu, D-Ser, L-His, L-Glu, L-Arg, and L-Ornithine (L-Orn) at 5 and 50 mM in QS-related pathways, focusing on the effects on bacterial growth and carbon flux distributions.</p><p><strong>Results: </strong>Among the tested AAs, D-Met was the only one that did not enhance the growth rate of <i>P. aeruginosa</i> PAO1, while L-Arg and L-Orn increased fluxes in the L-methionine biosynthesis pathway, influencing the <i>metH</i> gene. These findings suggest a differential metabolic role for D-and L-AAs in QS-related pathways.</p><p><strong>Conclusions: </strong>Our results shed some light on the metabolic impact of AAs on QS-related pathways and their potential role in <i>P. aeruginosa</i> virulence. Future studies should assess D-Met as a potential adjuvant in antimicrobial strategies, optimizing the concentration in combination with antibiotics to maximize its therapeutic effectiveness.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15040236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Amino acids (AAs) play a critical role in diseases such as cystic fibrosis where Pseudomonas aeruginosa PAO1 adapts its metabolism in response to host-derived nutrients. The adaptation influences virulence and complicates antibiotic treatment mainly for the antimicrobial resistance context. D- and L-AAs have been analyzed for their impact on quorum sensing (QS), a mechanism that regulates virulence factors. This research aimed to reconstruct the genome-scale metabolic model (GEM) of P. aeruginosa PAO1 to investigate the metabolic roles of D- and L-AAs in QS-related pathways.
Methods: The updated GEM, iJD1249, was reconstructed by using protocols to integrate data from previous models and refined with well-standardized in silico media (LB, M9, and SCFM) to improve flux balance analysis accuracy. The model was used to explore the metabolic impact of D-Met, D-Ala, D-Glu, D-Ser, L-His, L-Glu, L-Arg, and L-Ornithine (L-Orn) at 5 and 50 mM in QS-related pathways, focusing on the effects on bacterial growth and carbon flux distributions.
Results: Among the tested AAs, D-Met was the only one that did not enhance the growth rate of P. aeruginosa PAO1, while L-Arg and L-Orn increased fluxes in the L-methionine biosynthesis pathway, influencing the metH gene. These findings suggest a differential metabolic role for D-and L-AAs in QS-related pathways.
Conclusions: Our results shed some light on the metabolic impact of AAs on QS-related pathways and their potential role in P. aeruginosa virulence. Future studies should assess D-Met as a potential adjuvant in antimicrobial strategies, optimizing the concentration in combination with antibiotics to maximize its therapeutic effectiveness.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.