Victor Dahlblom, Magnus Dustler, Sophia Zackrisson, Anders Tingberg
{"title":"Workload reduction of digital breast tomosynthesis screening using artificial intelligence and synthetic mammography: a simulation study.","authors":"Victor Dahlblom, Magnus Dustler, Sophia Zackrisson, Anders Tingberg","doi":"10.1117/1.JMI.12.S2.S22005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To achieve the high sensitivity of digital breast tomosynthesis (DBT), a time-consuming reading is necessary. However, synthetic mammography (SM) images, equivalent to digital mammography (DM), can be generated from DBT images. SM is faster to read and might be sufficient in many cases. We investigate using artificial intelligence (AI) to stratify examinations into reading of either SM or DBT to minimize workload and maximize accuracy.</p><p><strong>Approach: </strong>This is a retrospective study based on double-read paired DM and one-view DBT from the Malmö Breast Tomosynthesis Screening Trial. DBT examinations were analyzed with the cancer detection AI system ScreenPoint Transpara 1.7. For low-risk examinations, SM reading was simulated by assuming equality with DM reading. For high-risk examinations, the DBT reading results were used. Different combinations of single and double reading were studied.</p><p><strong>Results: </strong>By double-reading the DBT of 30% (4452/14,772) of the cases with the highest risk, and single-reading SM for the rest, 122 cancers would be detected with the same reading workload as DM double reading. That is 28% (27/95) more cancers would be detected than with DM double reading, and in total, 96% (122/127) of the cancers detectable with full DBT double reading would be found.</p><p><strong>Conclusions: </strong>In a DBT-based screening program, AI could be used to select high-risk cases where the reading of DBT is valuable, whereas SM is sufficient for low-risk cases. Substantially, more cancers could be detected compared with DM only, with only a limited increase in reading workload. Prospective studies are necessary.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22005"},"PeriodicalIF":1.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S2.S22005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To achieve the high sensitivity of digital breast tomosynthesis (DBT), a time-consuming reading is necessary. However, synthetic mammography (SM) images, equivalent to digital mammography (DM), can be generated from DBT images. SM is faster to read and might be sufficient in many cases. We investigate using artificial intelligence (AI) to stratify examinations into reading of either SM or DBT to minimize workload and maximize accuracy.
Approach: This is a retrospective study based on double-read paired DM and one-view DBT from the Malmö Breast Tomosynthesis Screening Trial. DBT examinations were analyzed with the cancer detection AI system ScreenPoint Transpara 1.7. For low-risk examinations, SM reading was simulated by assuming equality with DM reading. For high-risk examinations, the DBT reading results were used. Different combinations of single and double reading were studied.
Results: By double-reading the DBT of 30% (4452/14,772) of the cases with the highest risk, and single-reading SM for the rest, 122 cancers would be detected with the same reading workload as DM double reading. That is 28% (27/95) more cancers would be detected than with DM double reading, and in total, 96% (122/127) of the cancers detectable with full DBT double reading would be found.
Conclusions: In a DBT-based screening program, AI could be used to select high-risk cases where the reading of DBT is valuable, whereas SM is sufficient for low-risk cases. Substantially, more cancers could be detected compared with DM only, with only a limited increase in reading workload. Prospective studies are necessary.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.