Integrative analysis of high-dimensional RCT and RWD subject to censoring and hidden confounding.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xin Ye, Shu Yang, Xiaofei Wang, Yanyan Liu
{"title":"Integrative analysis of high-dimensional RCT and RWD subject to censoring and hidden confounding.","authors":"Xin Ye, Shu Yang, Xiaofei Wang, Yanyan Liu","doi":"10.1007/s10985-025-09654-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we focus on estimating the heterogeneous treatment effect (HTE) for survival outcome. The outcome is subject to censoring and the number of covariates is high-dimensional. We utilize data from both the randomized controlled trial (RCT), considered as the gold standard, and real-world data (RWD), possibly affected by hidden confounding factors. To achieve a more efficient HTE estimate, such integrative analysis requires great insight into the data generation mechanism, particularly the accurate characterization of unmeasured confounding effects/bias. With this aim, we propose a penalized-regression-based integrative approach that allows for the simultaneous estimation of parameters, selection of variables, and identification of the existence of unmeasured confounding effects. The consistency, asymptotic normality, and efficiency gains are rigorously established for the proposed estimate. Finally, we apply the proposed method to estimate the HTE of lobar/sublobar resection on the survival of lung cancer patients. The RCT is a multicenter non-inferiority randomized phase 3 trial, and the RWD comes from a clinical oncology cancer registry in the United States. The analysis reveals that the unmeasured confounding exists and the integrative approach does enhance the efficiency for the HTE estimation.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09654-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focus on estimating the heterogeneous treatment effect (HTE) for survival outcome. The outcome is subject to censoring and the number of covariates is high-dimensional. We utilize data from both the randomized controlled trial (RCT), considered as the gold standard, and real-world data (RWD), possibly affected by hidden confounding factors. To achieve a more efficient HTE estimate, such integrative analysis requires great insight into the data generation mechanism, particularly the accurate characterization of unmeasured confounding effects/bias. With this aim, we propose a penalized-regression-based integrative approach that allows for the simultaneous estimation of parameters, selection of variables, and identification of the existence of unmeasured confounding effects. The consistency, asymptotic normality, and efficiency gains are rigorously established for the proposed estimate. Finally, we apply the proposed method to estimate the HTE of lobar/sublobar resection on the survival of lung cancer patients. The RCT is a multicenter non-inferiority randomized phase 3 trial, and the RWD comes from a clinical oncology cancer registry in the United States. The analysis reveals that the unmeasured confounding exists and the integrative approach does enhance the efficiency for the HTE estimation.

高维RCT与RWD的综合分析。
在这项研究中,我们着重于估计异质性治疗效果(HTE)对生存结局的影响。结果受到审查,协变量的数量是高维的。我们使用的数据来自随机对照试验(RCT),被认为是金标准,和现实世界的数据(RWD),可能受到隐藏的混杂因素的影响。为了获得更有效的HTE估计,这种综合分析需要深入了解数据生成机制,特别是对未测量的混杂效应/偏差的准确描述。为此,我们提出了一种基于惩罚回归的综合方法,该方法允许同时估计参数、选择变量和识别未测量混杂效应的存在。对所提出的估计严格地建立了一致性、渐近正态性和效率增益。最后,我们应用所提出的方法估计肺叶/叶下切除术对肺癌患者生存的HTE。该RCT是一项多中心非劣效性随机3期试验,RWD来自美国临床肿瘤学癌症登记处。分析表明,存在不可测量的混杂,综合方法提高了HTE估计的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信