{"title":"Deep learning-based decision support system for cervical cancer identification in liquid-based cytology pap smears.","authors":"Ghada Atteia, Maali Alabdulhafith, Hanaa A Abdallah, Nagwan Abdel Samee, Walaa Alayed","doi":"10.1177/09287329251330081","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundCervical cancer is the fourth most common cause of women cancer deaths worldwide. The primary etiology of cervical cancer is the persistent infection of specific high-risk strains of the human papillomavirus. Liquid-based cytology is the established method for early detection of cervical cancer. The evaluation of cellular abnormalities at a microscopic level allows for the identification of malignant or precancerous features in liquid-based cytology pap smears. This technique is characterized by its time-consuming nature and susceptibility to both inter- and intra-observer variability. Hence, the utilization of Artificial Intelligence in computer-assisted diagnosis can reduce the duration needed for diagnosing this ailment, thereby eliminating delayed diagnosis and facilitating the implementation of an efficient treatment.ObjectiveThis research presents a new deep learning-based cervical cancer identification decision support system in liquid-based cytology smear images.MethodsThe proposed diagnosis support system incorporates a novel hybrid feature reduction and optimization module, which integrates a sparse Autoencoder with the Binary Harris Hawk metaheuristic optimization algorithm to select the most informative features from a supplemented feature set of the input images. The supplemented feature set is retrieved by three pretrained Convolutional Neural Networks. The module utilizes an improved feature set to conduct a Bayesian-optimized K Nearest Neighbors machine learning classification of cervical cancer in input Pap smears.ResultsThe introduced approach achieves a classification accuracy of 99.9% and demonstrates an improved ability to detect the stages of cervical cancer, with a sensitivity of 99.8%. In addition, the system has the ability to identify the lack of cervical cancer stages with a specificity rate of 99.9%.ConclusionThe proposed system outpaces recent deep learning-based cervical cancer identification systems.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"2194-2210"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251330081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundCervical cancer is the fourth most common cause of women cancer deaths worldwide. The primary etiology of cervical cancer is the persistent infection of specific high-risk strains of the human papillomavirus. Liquid-based cytology is the established method for early detection of cervical cancer. The evaluation of cellular abnormalities at a microscopic level allows for the identification of malignant or precancerous features in liquid-based cytology pap smears. This technique is characterized by its time-consuming nature and susceptibility to both inter- and intra-observer variability. Hence, the utilization of Artificial Intelligence in computer-assisted diagnosis can reduce the duration needed for diagnosing this ailment, thereby eliminating delayed diagnosis and facilitating the implementation of an efficient treatment.ObjectiveThis research presents a new deep learning-based cervical cancer identification decision support system in liquid-based cytology smear images.MethodsThe proposed diagnosis support system incorporates a novel hybrid feature reduction and optimization module, which integrates a sparse Autoencoder with the Binary Harris Hawk metaheuristic optimization algorithm to select the most informative features from a supplemented feature set of the input images. The supplemented feature set is retrieved by three pretrained Convolutional Neural Networks. The module utilizes an improved feature set to conduct a Bayesian-optimized K Nearest Neighbors machine learning classification of cervical cancer in input Pap smears.ResultsThe introduced approach achieves a classification accuracy of 99.9% and demonstrates an improved ability to detect the stages of cervical cancer, with a sensitivity of 99.8%. In addition, the system has the ability to identify the lack of cervical cancer stages with a specificity rate of 99.9%.ConclusionThe proposed system outpaces recent deep learning-based cervical cancer identification systems.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).