{"title":"<b>Structure of myelin in the central nervous system and another possible driving force for its formation</b>-<b>myelin compaction</b>.","authors":"Qi Shao, Simin Chen, Tian Xu, Yuyu Shi, Zijin Sun, Qingguo Wang, Xueqian Wang, Fafeng Cheng","doi":"10.1631/jzus.B2300776","DOIUrl":null,"url":null,"abstract":"<p><p>Myelin formation is considered the last true \"invention\" in the evolution of vertebrate nervous system cell structure. The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement, sensation, and cognitive function. As a key structure in the brain, white matter is the gathering place of myelin. However, with age, white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes, causing serious neurological and cognitive disorders. Despite the extensive time and effort invested in exploring myelination and its functions, numerous unresolved issues and challenges persist. In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system (CNS) diseases and even mental illnesses. In this study, we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS, delving into its formation process. Specifically, we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension. The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 4","pages":"303-316"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300776","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myelin formation is considered the last true "invention" in the evolution of vertebrate nervous system cell structure. The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement, sensation, and cognitive function. As a key structure in the brain, white matter is the gathering place of myelin. However, with age, white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes, causing serious neurological and cognitive disorders. Despite the extensive time and effort invested in exploring myelination and its functions, numerous unresolved issues and challenges persist. In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system (CNS) diseases and even mental illnesses. In this study, we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS, delving into its formation process. Specifically, we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension. The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.