Exploring the influencing factors of abdominal aortic calcification events in chronic kidney disease (CKD) and non-CKD patients based on interpretable machine learning methods.

IF 1.8 4区 医学 Q3 UROLOGY & NEPHROLOGY
Haowen Lin, Xiaoying Dong, Yuhe Yin, Qingqing Gao, Siqi Peng, Zewen Zhao, Sijia Li, Renwei Huang, Yiming Tao, Sichun Wen, Bohou Li, Qiong Wu, Ting Lin, Hao Dai, Feng Wen, Zhuo Li, Lixia Xu, Jianchao Ma, Zhonglin Feng, Shuangxin Liu
{"title":"Exploring the influencing factors of abdominal aortic calcification events in chronic kidney disease (CKD) and non-CKD patients based on interpretable machine learning methods.","authors":"Haowen Lin, Xiaoying Dong, Yuhe Yin, Qingqing Gao, Siqi Peng, Zewen Zhao, Sijia Li, Renwei Huang, Yiming Tao, Sichun Wen, Bohou Li, Qiong Wu, Ting Lin, Hao Dai, Feng Wen, Zhuo Li, Lixia Xu, Jianchao Ma, Zhonglin Feng, Shuangxin Liu","doi":"10.1007/s11255-025-04564-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Calcification is prevalent in CKD patients, with abdominal aortic calcification (AAC) being a strong predictor of coronary calcification. We aimed to identify key calcification factors in CKD and non-CKD populations using machine learning models.</p><p><strong>Methods: </strong>Data from the National Health and Nutrition Examination Survey (NHANES), including demographics, blood and urine tests, and AAC scores, were analyzed using machine learning models. The Shapley additive explanations (SHAP) analysis was applied to interpret the models.</p><p><strong>Results: </strong>Among 505 CKD and 2,582 non-CKD participants, common key factors for calcification included age, estimated glomerular filtration rate (eGFR), smoking history, blood glucose levels (Glu), Ca*P and the urine albumin-to-creatinine ratio (UACR). Age, smoking history and eGFR were the top-ranking features in the model for both two groups. Inflammatory markers such as monocyte-to-lymphocyte ratio (MHR), monocyte-to-high-density lipoprotein ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) were more significant in CKD group. Trigger points for AAC events were identified: in CKD, eGFR of 90 mL/min/1.73 m<sup>2</sup>, MHR values of 0.5 and 0.75, MLR values of 0.25, and SP of 120 mmHg; in non-CKD, eGFR of 105 mL/min/1.73 m<sup>2</sup>, Ca*P values of 40, UACR values of 10, and TG of 200 mg/dL.</p><p><strong>Conclusions: </strong>Regardless of CKD status, age, smoking history, and eGFR are key determinants of calcification. In the CKD population, inflammatory markers are more significant than in the non-CKD group.</p>","PeriodicalId":14454,"journal":{"name":"International Urology and Nephrology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11255-025-04564-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Calcification is prevalent in CKD patients, with abdominal aortic calcification (AAC) being a strong predictor of coronary calcification. We aimed to identify key calcification factors in CKD and non-CKD populations using machine learning models.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES), including demographics, blood and urine tests, and AAC scores, were analyzed using machine learning models. The Shapley additive explanations (SHAP) analysis was applied to interpret the models.

Results: Among 505 CKD and 2,582 non-CKD participants, common key factors for calcification included age, estimated glomerular filtration rate (eGFR), smoking history, blood glucose levels (Glu), Ca*P and the urine albumin-to-creatinine ratio (UACR). Age, smoking history and eGFR were the top-ranking features in the model for both two groups. Inflammatory markers such as monocyte-to-lymphocyte ratio (MHR), monocyte-to-high-density lipoprotein ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) were more significant in CKD group. Trigger points for AAC events were identified: in CKD, eGFR of 90 mL/min/1.73 m2, MHR values of 0.5 and 0.75, MLR values of 0.25, and SP of 120 mmHg; in non-CKD, eGFR of 105 mL/min/1.73 m2, Ca*P values of 40, UACR values of 10, and TG of 200 mg/dL.

Conclusions: Regardless of CKD status, age, smoking history, and eGFR are key determinants of calcification. In the CKD population, inflammatory markers are more significant than in the non-CKD group.

基于可解释的机器学习方法探讨慢性肾脏疾病(CKD)和非CKD患者腹主动脉钙化事件的影响因素。
背景:钙化在CKD患者中很普遍,腹主动脉钙化(AAC)是冠状动脉钙化的一个强有力的预测指标。我们的目标是使用机器学习模型确定CKD和非CKD人群的关键钙化因素。方法:使用机器学习模型分析来自国家健康和营养检查调查(NHANES)的数据,包括人口统计、血液和尿液测试以及AAC分数。采用Shapley加性解释(SHAP)分析对模型进行解释。结果:在505名CKD和2582名非CKD参与者中,钙化的常见关键因素包括年龄、估计的肾小球滤过率(eGFR)、吸烟史、血糖水平(Glu)、Ca*P和尿白蛋白与肌酐比(UACR)。年龄、吸烟史和eGFR是两组模型中最重要的特征。炎症标志物如单核细胞与淋巴细胞比值(MHR)、单核细胞与高密度脂蛋白比值(MLR)和中性粒细胞与淋巴细胞比值(NLR)在CKD组中更为显著。确定了AAC事件的触发点:CKD中eGFR为90 mL/min/1.73 m2, MHR值为0.5和0.75,MLR值为0.25,SP为120 mmHg;非ckd组eGFR为105 mL/min/1.73 m2, Ca*P值40,UACR值10,TG为200 mg/dL。结论:无论CKD状态如何,年龄、吸烟史和eGFR是钙化的关键决定因素。在CKD人群中,炎症标志物比非CKD组更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Urology and Nephrology
International Urology and Nephrology 医学-泌尿学与肾脏学
CiteScore
3.40
自引率
5.00%
发文量
329
审稿时长
1.7 months
期刊介绍: International Urology and Nephrology publishes original papers on a broad range of topics in urology, nephrology and andrology. The journal integrates papers originating from clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信