Effects of targeted deletion of a 284 bp avian-specific highly conserved element within the Sim1 gene on flight feather development in chickens.

IF 4.7 1区 生物学 Q1 ZOOLOGY
Keiji Kinoshita, Kumiko Tanabe, Muhammad Ameen Jamal, Momoko Kyu-Shin, Kai-Xiang Xu, Yan-Hua Su, Xiong Zhang, Takayuki Suzuki, Hong-Jiang Wei
{"title":"Effects of targeted deletion of a 284 bp avian-specific highly conserved element within the <i>Sim1</i> gene on flight feather development in chickens.","authors":"Keiji Kinoshita, Kumiko Tanabe, Muhammad Ameen Jamal, Momoko Kyu-Shin, Kai-Xiang Xu, Yan-Hua Su, Xiong Zhang, Takayuki Suzuki, Hong-Jiang Wei","doi":"10.24272/j.issn.2095-8137.2024.343","DOIUrl":null,"url":null,"abstract":"<p><p>Flight feathers represent a hallmark innovation of avian evolution. Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element (ASHCE) located within the eighth intron of the SIM bHLH transcription factor 1 ( <i>Sim1</i>) gene, postulated to act as a <i>cis</i>-regulatory element governing flight feather morphogenesis. To investigate its functional significance, genome-edited (GE) primordial germ cell (PGC) lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing, with germline chimeric males subsequently mated with wild-type (WT) hens to obtain GE progeny. The resulting GE chickens harbored 257-260 bp deletions, excising approximately half of the <i>Sim1</i>-ASHCE sequence. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed an average 0.32-fold reduction in <i>Sim1</i> expression in the forelimbs of GE embryos at day 8 (E8) compared to WT counterparts. Despite this, GE chickens developed structurally normal flight and tail feathers. <i>In situ</i> hybridization localized <i>Sim1</i> expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos, but not within the buds themselves. These results suggest that partial deletion of <i>Sim1</i>-ASHCE, despite diminishing <i>Sim1</i> expression, does not disrupt flight feather formation. The excised region appears to possess enhancer activity toward <i>Sim1</i> but is dispensable for flight feather development. Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of <i>Sim1</i> in avian feather morphogenesis.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"608-617"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.343","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flight feathers represent a hallmark innovation of avian evolution. Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element (ASHCE) located within the eighth intron of the SIM bHLH transcription factor 1 ( Sim1) gene, postulated to act as a cis-regulatory element governing flight feather morphogenesis. To investigate its functional significance, genome-edited (GE) primordial germ cell (PGC) lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing, with germline chimeric males subsequently mated with wild-type (WT) hens to obtain GE progeny. The resulting GE chickens harbored 257-260 bp deletions, excising approximately half of the Sim1-ASHCE sequence. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed an average 0.32-fold reduction in Sim1 expression in the forelimbs of GE embryos at day 8 (E8) compared to WT counterparts. Despite this, GE chickens developed structurally normal flight and tail feathers. In situ hybridization localized Sim1 expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos, but not within the buds themselves. These results suggest that partial deletion of Sim1-ASHCE, despite diminishing Sim1 expression, does not disrupt flight feather formation. The excised region appears to possess enhancer activity toward Sim1 but is dispensable for flight feather development. Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of Sim1 in avian feather morphogenesis.

Sim1基因中284bp高度保守元件的缺失对鸡飞羽发育的影响
飞行羽毛代表了鸟类进化的标志性创新。最近的比较基因组分析发现了一个284 bp的鸟类特异性高度保守元件(ASHCE),位于SIM bHLH转录因子1 (Sim1)基因的第8个内含子中,被认为是控制飞行羽毛形态发生的顺式调控元件。为了研究其功能意义,利用CRISPR/ cas9介导的编辑技术,产生了携带靶向ASHCE缺失的基因组编辑(GE)原始生殖细胞(PGC)系,随后将种系嵌合雄性与野生型(WT)母鸡交配,获得GE后代。由此得到的转基因鸡含有257-260 bp的缺失,切除了大约一半的Sim1-ASHCE序列。逆转录-定量实时聚合酶链反应(RT-qPCR)分析显示,与WT胚胎相比,转基因胚胎前肢Sim1表达在第8天(E8)平均降低0.32倍。尽管如此,转基因鸡发育出了结构正常的飞行羽毛和尾羽。原位杂交将Sim1的表达定位在E8 WT胚胎飞行羽芽周围的后间质,而不是芽本身。这些结果表明,尽管Sim1- ashce的部分缺失减少了Sim1的表达,但并不会破坏飞羽的形成。切除的区域似乎具有对Sim1的增强活性,但对于飞行羽毛的发育是必不可少的。为了充分解决Sim1在鸟类羽毛形态发生中的调节作用,有必要完全消融ASHCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信