Ignacio Rodríguez-Rodríguez, José Ignacio Mateo-Trujillo, Andrés Ortiz, Nicolás J Gallego-Molina, Diego Castillo-Barnes, Juan L Luque
{"title":"Directed Weighted EEG Connectogram Insights of One-to-One Causality for Identifying Developmental Dyslexia.","authors":"Ignacio Rodríguez-Rodríguez, José Ignacio Mateo-Trujillo, Andrés Ortiz, Nicolás J Gallego-Molina, Diego Castillo-Barnes, Juan L Luque","doi":"10.1142/S0129065725500327","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental dyslexia (DD) affects approximately 5-12% of learners, posing persistent challenges in reading and writing. This study presents a novel electroencephalography (EEG)-based methodology for identifying DD using two auditory stimuli modulated at 4.8[Formula: see text]Hz (prosodic) and 40[Formula: see text]Hz (phonemic). EEG signals were processed to estimate one-to-one Granger causality, yielding directed and weighted connectivity matrices. A novel Mutually Informed Correlation Coefficient (MICC) feature selection method was employed to identify the most relevant causal links, which were visualized using connectograms. Under the 4.8[Formula: see text]Hz stimulus, altered theta-band connectivity between frontal and occipital regions indicated compensatory frontal activation for prosodic processing and visual-auditory integration difficulties, while gamma-band anomalies between occipital and temporal regions suggested impaired visual-prosodic integration. Classification analysis under the 4.8[Formula: see text]Hz stimulus yielded area under the ROC curve (AUC) values of 0.92 (theta) and 0.91 (gamma band). Under the 40[Formula: see text]Hz stimulus, theta abnormalities reflected dysfunctions in integrating auditory phoneme signals with executive and motor regions, and gamma alterations indicated difficulties coordinating visual and auditory inputs for phonological decoding, with AUC values of 0.84 (theta) and 0.89 (gamma). These results support both the Temporal Sampling Framework and the Phonological Core Deficit Hypothesis. Future research should extend the range of stimuli frequencies and include more diverse cohorts to further validate these potential biomarkers.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550032"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental dyslexia (DD) affects approximately 5-12% of learners, posing persistent challenges in reading and writing. This study presents a novel electroencephalography (EEG)-based methodology for identifying DD using two auditory stimuli modulated at 4.8[Formula: see text]Hz (prosodic) and 40[Formula: see text]Hz (phonemic). EEG signals were processed to estimate one-to-one Granger causality, yielding directed and weighted connectivity matrices. A novel Mutually Informed Correlation Coefficient (MICC) feature selection method was employed to identify the most relevant causal links, which were visualized using connectograms. Under the 4.8[Formula: see text]Hz stimulus, altered theta-band connectivity between frontal and occipital regions indicated compensatory frontal activation for prosodic processing and visual-auditory integration difficulties, while gamma-band anomalies between occipital and temporal regions suggested impaired visual-prosodic integration. Classification analysis under the 4.8[Formula: see text]Hz stimulus yielded area under the ROC curve (AUC) values of 0.92 (theta) and 0.91 (gamma band). Under the 40[Formula: see text]Hz stimulus, theta abnormalities reflected dysfunctions in integrating auditory phoneme signals with executive and motor regions, and gamma alterations indicated difficulties coordinating visual and auditory inputs for phonological decoding, with AUC values of 0.84 (theta) and 0.89 (gamma). These results support both the Temporal Sampling Framework and the Phonological Core Deficit Hypothesis. Future research should extend the range of stimuli frequencies and include more diverse cohorts to further validate these potential biomarkers.