Prior guided deep difference meta-learner for fast adaptation to stylized segmentation.

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Machine Learning Science and Technology Pub Date : 2025-06-30 Epub Date: 2025-04-16 DOI:10.1088/2632-2153/adc970
Dan Nguyen, Anjali Balagopal, Ti Bai, Michael Dohopolski, Mu-Han Lin, Steve Jiang
{"title":"Prior guided deep difference meta-learner for fast adaptation to stylized segmentation.","authors":"Dan Nguyen, Anjali Balagopal, Ti Bai, Michael Dohopolski, Mu-Han Lin, Steve Jiang","doi":"10.1088/2632-2153/adc970","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy treatment planning requires segmenting anatomical structures in various styles, influenced by guidelines, protocols, preferences, or dose planning needs. Deep learning-based auto-segmentation models, trained on anatomical definitions, may not match local clinicians' styles at new institutions. Adapting these models can be challenging without sufficient resources. We hypothesize that consistent differences between segmentation styles and anatomical definitions can be learned from initial patients and applied to pre-trained models for more precise segmentation. We propose a Prior-guided deep difference meta-learner (DDL) to learn and adapt these differences. We collected data from 440 patients for model development and 30 for testing. The dataset includes contours of the prostate clinical target volume (CTV), parotid, and rectum. We developed a deep learning framework that segments new images with a matching style using example styles as a prior, without model retraining. The pre-trained segmentation models were adapted to three different clinician styles for post-operative CTV for prostate, parotid gland, and rectum segmentation. We tested the model's ability to learn unseen styles and compared its performance with transfer learning, using varying amounts of prior patient style data (0-10 patients). Performance was quantitatively evaluated using dice similarity coefficient (DSC) and Hausdorff distance. With exposure to only three patients for the model, the average DSC (%) improved from 78.6, 71.9, 63.0, 69.6, 52.2 and 46.3-84.4, 77.8, 73.0, 77.8, 70.5, 68.1, for CTV<sub>style1</sub>, CTV<sub>style2</sub>, CTV<sub>style3</sub>, Parotid<sub>superficial</sub>, Rectum<sub>superior</sub>, and Rectum<sub>posterior</sub>, respectively. The proposed Prior-guided DDL is a fast and effortless network for adapting a structure to new styles. The improved segmentation accuracy may result in reduced contour editing time, providing a more efficient and streamlined clinical workflow.</p>","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"6 2","pages":"025016"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/adc970","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy treatment planning requires segmenting anatomical structures in various styles, influenced by guidelines, protocols, preferences, or dose planning needs. Deep learning-based auto-segmentation models, trained on anatomical definitions, may not match local clinicians' styles at new institutions. Adapting these models can be challenging without sufficient resources. We hypothesize that consistent differences between segmentation styles and anatomical definitions can be learned from initial patients and applied to pre-trained models for more precise segmentation. We propose a Prior-guided deep difference meta-learner (DDL) to learn and adapt these differences. We collected data from 440 patients for model development and 30 for testing. The dataset includes contours of the prostate clinical target volume (CTV), parotid, and rectum. We developed a deep learning framework that segments new images with a matching style using example styles as a prior, without model retraining. The pre-trained segmentation models were adapted to three different clinician styles for post-operative CTV for prostate, parotid gland, and rectum segmentation. We tested the model's ability to learn unseen styles and compared its performance with transfer learning, using varying amounts of prior patient style data (0-10 patients). Performance was quantitatively evaluated using dice similarity coefficient (DSC) and Hausdorff distance. With exposure to only three patients for the model, the average DSC (%) improved from 78.6, 71.9, 63.0, 69.6, 52.2 and 46.3-84.4, 77.8, 73.0, 77.8, 70.5, 68.1, for CTVstyle1, CTVstyle2, CTVstyle3, Parotidsuperficial, Rectumsuperior, and Rectumposterior, respectively. The proposed Prior-guided DDL is a fast and effortless network for adapting a structure to new styles. The improved segmentation accuracy may result in reduced contour editing time, providing a more efficient and streamlined clinical workflow.

先验引导深度差异元学习器快速适应程式化分割。
放疗治疗计划需要分割不同风格的解剖结构,受指南、方案、偏好或剂量计划需求的影响。基于解剖定义的深度学习自动分割模型可能与新机构的当地临床医生的风格不匹配。在没有足够资源的情况下,调整这些模型可能具有挑战性。我们假设,分割风格和解剖定义之间的一致差异可以从初始患者身上学习到,并应用于预训练模型,以实现更精确的分割。我们提出了一个先验引导的深度差异元学习者(DDL)来学习和适应这些差异。我们收集了440例患者的数据用于模型开发,30例用于测试。该数据集包括前列腺临床靶体积(CTV)、腮腺和直肠的轮廓。我们开发了一个深度学习框架,该框架使用示例风格作为先验,将具有匹配风格的新图像分割,而无需模型再训练。预先训练的分割模型适用于三种不同的临床医生风格,用于前列腺、腮腺和直肠的术后CTV分割。我们测试了模型学习未知风格的能力,并使用不同数量的先前患者风格数据(0-10名患者)将其性能与迁移学习进行了比较。使用骰子相似系数(DSC)和豪斯多夫距离对性能进行定量评价。仅暴露于3例患者时,CTVstyle1、CTVstyle2、CTVstyle3、腮腺浅、上直肠和后直肠的平均DSC(%)分别从78.6、71.9、63.0、69.6、52.2和46.3提高到84.4、77.8、73.0、77.8、70.5、68.1。提出的先验引导DDL是一种快速且轻松的网络,可以使结构适应新的样式。改进的分割精度可以减少轮廓编辑时间,提供更有效和精简的临床工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信