Lu Gan, Zhengyu Zhang, Jingtao Chen, Zhichun Shen, Wujie Chen, Shaoxin Chen, Jiyang Li
{"title":"Enhancement of spinosad production in Saccharopolyspora spinosa by overexpression of the complete 74-kb spinosyn gene cluster.","authors":"Lu Gan, Zhengyu Zhang, Jingtao Chen, Zhichun Shen, Wujie Chen, Shaoxin Chen, Jiyang Li","doi":"10.1186/s12934-025-02724-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinosad, a secondary metabolite produced by Saccharopolyspora spinosa, is a polyketide macrolide insecticide with low toxicity and environmental friendliness. Owing to the high level of DNA methylation and unclear regulatory mechanisms, gene engineering to increase spinosad production is challenging. Limited improvements in yield have been observed with heterologous expression or partial overexpression of the 74-kb spinosyn gene cluster (spn), and research on the overexpression of the complete spinosyn gene cluster is lacking.</p><p><strong>Results: </strong>The plasmid pCM265-spn was constructed using CRISPR/Cas9-mediated Transformation-Associated Recombination cloning to enable the overexpression of the complete spn gene cluster in Sa. spinosa. The engineered strain Sa. spinosa-spn achieved a 124% increase in spinosad yield (693 mg/L) compared to the wild type (309 mg/L). The overexpression of the spn gene cluster also delayed spore formation and reduced hyphal compartmentalization by influencing the transcription of related genes (bldD, ssgA, whiA, whiB, and fstZ). Transcriptional analysis revealed significant upregulation of genes in the spn gene cluster, thereby enhancing secondary metabolism. Additionally, optimization of the fermentation medium through response surface methodology further increased spinosad production to 920 mg/L.</p><p><strong>Conclusions: </strong>This study is the first to successfully overexpress the complete spn gene cluster in Sa. spinosa, significantly enhancing spinosad production. These findings have significance for further optimization of spinosad biosynthesis.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"102"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02724-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Spinosad, a secondary metabolite produced by Saccharopolyspora spinosa, is a polyketide macrolide insecticide with low toxicity and environmental friendliness. Owing to the high level of DNA methylation and unclear regulatory mechanisms, gene engineering to increase spinosad production is challenging. Limited improvements in yield have been observed with heterologous expression or partial overexpression of the 74-kb spinosyn gene cluster (spn), and research on the overexpression of the complete spinosyn gene cluster is lacking.
Results: The plasmid pCM265-spn was constructed using CRISPR/Cas9-mediated Transformation-Associated Recombination cloning to enable the overexpression of the complete spn gene cluster in Sa. spinosa. The engineered strain Sa. spinosa-spn achieved a 124% increase in spinosad yield (693 mg/L) compared to the wild type (309 mg/L). The overexpression of the spn gene cluster also delayed spore formation and reduced hyphal compartmentalization by influencing the transcription of related genes (bldD, ssgA, whiA, whiB, and fstZ). Transcriptional analysis revealed significant upregulation of genes in the spn gene cluster, thereby enhancing secondary metabolism. Additionally, optimization of the fermentation medium through response surface methodology further increased spinosad production to 920 mg/L.
Conclusions: This study is the first to successfully overexpress the complete spn gene cluster in Sa. spinosa, significantly enhancing spinosad production. These findings have significance for further optimization of spinosad biosynthesis.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems