Fine mapping of qROL1 for root length at early seedling stage from wild rice (Oryza nivara).

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-04-07 eCollection Date: 2025-04-01 DOI:10.1007/s11032-025-01564-2
Shuqin Zhang, Xinmin Wang, Hongbo Wang, Jun Zou, Lu Dai, Haodong Deng, Wanxia Jiang, Lubin Tan, Fengxia Liu
{"title":"Fine mapping of <i>qROL1</i> for root length at early seedling stage from wild rice (<i>Oryza nivara</i>).","authors":"Shuqin Zhang, Xinmin Wang, Hongbo Wang, Jun Zou, Lu Dai, Haodong Deng, Wanxia Jiang, Lubin Tan, Fengxia Liu","doi":"10.1007/s11032-025-01564-2","DOIUrl":null,"url":null,"abstract":"<p><p>Root is an important tissue to absorb water and nutrients from soil in plant and root architecture is one of critical traits influencing grain yield in crop. However, the genetic basis of root architecture remains unclear. In the present study, we identified a wild rice (<i>Oryza nivara</i>) introgression line Ra33 with longer seedling root length compared with the recipient parent 9311, an <i>indica</i> variety. Observation of longitudinal sections of root showed that the meristem length of Ra33 was significantly longer than that of 9311. Using an F<sub>2</sub> secondary segregating population derived from a cross between introgression line Ra33 and the recipient parent 9311, we detected a major QTL for root length at early seedling stage, <i>qROL1</i>, between the molecular markers M3 and M5 on chromosome 1, and the <i>O</i>. <i>nivara</i>-derived allele at <i>qROL1</i> increased root length under the background of 9311. In addition, the near-isogenic line NIL-<i>ROL1</i> showed a significant increase in root length compared with the recipient parent 9311, further demonstrating the genetic effect of <i>qROL1</i>. And then, a total of 159 recombinant individuals were screened from 3355 F<sub>2</sub> individuals and the QTL <i>qROL1</i> was narrowed down to an approximate 78 kb interval between markers M4 and RM3, including 12 predicted genes. Further sequence comparison and expression analysis of the predicted genes in the fine-mapping region indicated that eight genes might be the interesting candidates of <i>qROL1</i>. The findings will provide new clues to reveal the genetic basis of root length and genetic resources for root architecture improvement in rice.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01564-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"41"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01564-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Root is an important tissue to absorb water and nutrients from soil in plant and root architecture is one of critical traits influencing grain yield in crop. However, the genetic basis of root architecture remains unclear. In the present study, we identified a wild rice (Oryza nivara) introgression line Ra33 with longer seedling root length compared with the recipient parent 9311, an indica variety. Observation of longitudinal sections of root showed that the meristem length of Ra33 was significantly longer than that of 9311. Using an F2 secondary segregating population derived from a cross between introgression line Ra33 and the recipient parent 9311, we detected a major QTL for root length at early seedling stage, qROL1, between the molecular markers M3 and M5 on chromosome 1, and the O. nivara-derived allele at qROL1 increased root length under the background of 9311. In addition, the near-isogenic line NIL-ROL1 showed a significant increase in root length compared with the recipient parent 9311, further demonstrating the genetic effect of qROL1. And then, a total of 159 recombinant individuals were screened from 3355 F2 individuals and the QTL qROL1 was narrowed down to an approximate 78 kb interval between markers M4 and RM3, including 12 predicted genes. Further sequence comparison and expression analysis of the predicted genes in the fine-mapping region indicated that eight genes might be the interesting candidates of qROL1. The findings will provide new clues to reveal the genetic basis of root length and genetic resources for root architecture improvement in rice.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01564-2.

野生稻苗期根系长度qROL1的精细定位。
根系是植物吸收土壤水分和养分的重要组织,根系构型是影响作物产量的重要性状之一。然而,根构型的遗传基础尚不清楚。在本研究中,我们鉴定了一个野生水稻(Oryza nivara)的渗入系Ra33,其幼苗根长比受体亲本籼稻品种9311长。根纵切面观察表明,Ra33的分生组织长度显著长于9311。利用侵染系Ra33与受体亲本9311杂交获得的F2二级分离群体,在1号染色体M3和M5分子标记间检测到一个决定幼苗早期根系长度的主要QTL qROL1,在9311背景下,该qROL1等位基因增加了根长。近等基因系NIL-ROL1的根长较受体亲本9311显著增加,进一步证明了qROL1的遗传效应。然后,从3355个F2个体中筛选出159个重组个体,将QTL qROL1缩小到标记M4和RM3之间约78 kb的区间,其中包括12个预测基因。进一步对精细定位区预测基因的序列比较和表达分析表明,8个基因可能是qROL1的候选基因。这一发现将为揭示水稻根系长度的遗传基础和根系构型改良的遗传资源提供新的线索。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-025-01564-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信