Shuqin Zhang, Xinmin Wang, Hongbo Wang, Jun Zou, Lu Dai, Haodong Deng, Wanxia Jiang, Lubin Tan, Fengxia Liu
{"title":"Fine mapping of <i>qROL1</i> for root length at early seedling stage from wild rice (<i>Oryza nivara</i>).","authors":"Shuqin Zhang, Xinmin Wang, Hongbo Wang, Jun Zou, Lu Dai, Haodong Deng, Wanxia Jiang, Lubin Tan, Fengxia Liu","doi":"10.1007/s11032-025-01564-2","DOIUrl":null,"url":null,"abstract":"<p><p>Root is an important tissue to absorb water and nutrients from soil in plant and root architecture is one of critical traits influencing grain yield in crop. However, the genetic basis of root architecture remains unclear. In the present study, we identified a wild rice (<i>Oryza nivara</i>) introgression line Ra33 with longer seedling root length compared with the recipient parent 9311, an <i>indica</i> variety. Observation of longitudinal sections of root showed that the meristem length of Ra33 was significantly longer than that of 9311. Using an F<sub>2</sub> secondary segregating population derived from a cross between introgression line Ra33 and the recipient parent 9311, we detected a major QTL for root length at early seedling stage, <i>qROL1</i>, between the molecular markers M3 and M5 on chromosome 1, and the <i>O</i>. <i>nivara</i>-derived allele at <i>qROL1</i> increased root length under the background of 9311. In addition, the near-isogenic line NIL-<i>ROL1</i> showed a significant increase in root length compared with the recipient parent 9311, further demonstrating the genetic effect of <i>qROL1</i>. And then, a total of 159 recombinant individuals were screened from 3355 F<sub>2</sub> individuals and the QTL <i>qROL1</i> was narrowed down to an approximate 78 kb interval between markers M4 and RM3, including 12 predicted genes. Further sequence comparison and expression analysis of the predicted genes in the fine-mapping region indicated that eight genes might be the interesting candidates of <i>qROL1</i>. The findings will provide new clues to reveal the genetic basis of root length and genetic resources for root architecture improvement in rice.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01564-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"41"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01564-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Root is an important tissue to absorb water and nutrients from soil in plant and root architecture is one of critical traits influencing grain yield in crop. However, the genetic basis of root architecture remains unclear. In the present study, we identified a wild rice (Oryza nivara) introgression line Ra33 with longer seedling root length compared with the recipient parent 9311, an indica variety. Observation of longitudinal sections of root showed that the meristem length of Ra33 was significantly longer than that of 9311. Using an F2 secondary segregating population derived from a cross between introgression line Ra33 and the recipient parent 9311, we detected a major QTL for root length at early seedling stage, qROL1, between the molecular markers M3 and M5 on chromosome 1, and the O. nivara-derived allele at qROL1 increased root length under the background of 9311. In addition, the near-isogenic line NIL-ROL1 showed a significant increase in root length compared with the recipient parent 9311, further demonstrating the genetic effect of qROL1. And then, a total of 159 recombinant individuals were screened from 3355 F2 individuals and the QTL qROL1 was narrowed down to an approximate 78 kb interval between markers M4 and RM3, including 12 predicted genes. Further sequence comparison and expression analysis of the predicted genes in the fine-mapping region indicated that eight genes might be the interesting candidates of qROL1. The findings will provide new clues to reveal the genetic basis of root length and genetic resources for root architecture improvement in rice.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01564-2.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.