A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.

npj Imaging Pub Date : 2025-01-01 Epub Date: 2025-04-09 DOI:10.1038/s44303-025-00076-0
Chengyue Wu, Meryem Abbad Andaloussi, David A Hormuth, Ernesto A B F Lima, Guillermo Lorenzo, Casey E Stowers, Sriram Ravula, Brett Levac, Alexandros G Dimakis, Jonathan I Tamir, Kristy K Brock, Caroline Chung, Thomas E Yankeelov
{"title":"A critical assessment of artificial intelligence in magnetic resonance imaging of cancer.","authors":"Chengyue Wu, Meryem Abbad Andaloussi, David A Hormuth, Ernesto A B F Lima, Guillermo Lorenzo, Casey E Stowers, Sriram Ravula, Brett Levac, Alexandros G Dimakis, Jonathan I Tamir, Kristy K Brock, Caroline Chung, Thomas E Yankeelov","doi":"10.1038/s44303-025-00076-0","DOIUrl":null,"url":null,"abstract":"<p><p>Given the enormous output and pace of development of artificial intelligence (AI) methods in medical imaging, it can be challenging to identify the true success stories to determine the state-of-the-art of the field. This report seeks to provide the magnetic resonance imaging (MRI) community with an initial guide into the major areas in which the methods of AI are contributing to MRI in oncology. After a general introduction to artificial intelligence, we proceed to discuss the successes and current limitations of AI in MRI when used for image acquisition, reconstruction, registration, and segmentation, as well as its utility for assisting in diagnostic and prognostic settings. Within each section, we attempt to present a balanced summary by first presenting common techniques, state of readiness, current clinical needs, and barriers to practical deployment in the clinical setting. We conclude by presenting areas in which new advances must be realized to address questions regarding generalizability, quality assurance and control, and uncertainty quantification when applying MRI to cancer to maintain patient safety and practical utility.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00076-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given the enormous output and pace of development of artificial intelligence (AI) methods in medical imaging, it can be challenging to identify the true success stories to determine the state-of-the-art of the field. This report seeks to provide the magnetic resonance imaging (MRI) community with an initial guide into the major areas in which the methods of AI are contributing to MRI in oncology. After a general introduction to artificial intelligence, we proceed to discuss the successes and current limitations of AI in MRI when used for image acquisition, reconstruction, registration, and segmentation, as well as its utility for assisting in diagnostic and prognostic settings. Within each section, we attempt to present a balanced summary by first presenting common techniques, state of readiness, current clinical needs, and barriers to practical deployment in the clinical setting. We conclude by presenting areas in which new advances must be realized to address questions regarding generalizability, quality assurance and control, and uncertainty quantification when applying MRI to cancer to maintain patient safety and practical utility.

人工智能在癌症磁共振成像中的关键评估。
鉴于人工智能(AI)方法在医学成像领域的巨大产出和发展速度,确定真正的成功案例以确定该领域的最新进展可能具有挑战性。本报告旨在为磁共振成像(MRI)界提供初步指导,以了解人工智能方法在肿瘤学MRI中的主要领域。在对人工智能的一般介绍之后,我们继续讨论人工智能在MRI中用于图像采集,重建,配准和分割时的成功和当前的局限性,以及它在辅助诊断和预后设置中的实用性。在每个部分中,我们试图通过首先介绍常见技术、准备状态、当前临床需求和临床环境中实际部署的障碍来提供一个平衡的总结。最后,我们提出了在将MRI应用于癌症时必须实现新进展的领域,以解决有关通用性,质量保证和控制以及不确定性量化的问题,以保持患者的安全性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信