Dynamics of frontal cortex functional connectivity during cognitive tasks: insights from fNIRS analysis in the Dual n-back Paradigm.

IF 1.7 4区 心理学 Q3 PSYCHOLOGY, EXPERIMENTAL
Sima Shirzadi, Mehrdad Dadgostar, Hamidreza Hosseinzadeh, Zahra Einalou
{"title":"Dynamics of frontal cortex functional connectivity during cognitive tasks: insights from fNIRS analysis in the Dual n-back Paradigm.","authors":"Sima Shirzadi, Mehrdad Dadgostar, Hamidreza Hosseinzadeh, Zahra Einalou","doi":"10.1007/s10339-025-01275-8","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain operates as a complex network, and understanding its functional connectivity is a core challenge in neuroscience. Functional near-infrared spectroscopy (fNIRS) offers a non-invasive, portable method for studying brain activity and connectivity, providing valuable insights into the brain's network dynamics. In this study, we used fNIRS to examine the functional connectivity of the human brain during the Dual n-back task, a cognitive challenge that varies in memory load (0-back, 1-back, and 2-back). Data were collected from 24 channels in the frontal cortex and pre-processed with discrete wavelet transform. Functional connectivity matrices for each task level were calculated using correlation analysis, and graph theory metrics such as clustering coefficient and local and global efficiency were assessed. Statistical comparisons (t-tests and ANOVA) revealed significant differences in these metrics across memory load levels, with higher memory loads leading to altered brain connectivity patterns (p < 0.05 for clustering coefficient and local efficiency, p < 0.04 for global efficiency). These findings suggest that as cognitive demand increases, the functional connectivity of the brain's frontal network changes, reflecting the dynamic nature of brain activity during complex tasks. This research highlights the potential of fNIRS for exploring brain network functions and has broader implications for understanding cognitive processes and developing neurocognitive diagnostics and interventions.</p>","PeriodicalId":47638,"journal":{"name":"Cognitive Processing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Processing","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10339-025-01275-8","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain operates as a complex network, and understanding its functional connectivity is a core challenge in neuroscience. Functional near-infrared spectroscopy (fNIRS) offers a non-invasive, portable method for studying brain activity and connectivity, providing valuable insights into the brain's network dynamics. In this study, we used fNIRS to examine the functional connectivity of the human brain during the Dual n-back task, a cognitive challenge that varies in memory load (0-back, 1-back, and 2-back). Data were collected from 24 channels in the frontal cortex and pre-processed with discrete wavelet transform. Functional connectivity matrices for each task level were calculated using correlation analysis, and graph theory metrics such as clustering coefficient and local and global efficiency were assessed. Statistical comparisons (t-tests and ANOVA) revealed significant differences in these metrics across memory load levels, with higher memory loads leading to altered brain connectivity patterns (p < 0.05 for clustering coefficient and local efficiency, p < 0.04 for global efficiency). These findings suggest that as cognitive demand increases, the functional connectivity of the brain's frontal network changes, reflecting the dynamic nature of brain activity during complex tasks. This research highlights the potential of fNIRS for exploring brain network functions and has broader implications for understanding cognitive processes and developing neurocognitive diagnostics and interventions.

认知任务中额叶皮质功能连通性的动态:双n-back范式中fNIRS分析的见解。
人类大脑是一个复杂的网络,了解其功能连接是神经科学的核心挑战。功能近红外光谱(fNIRS)为研究大脑活动和连接提供了一种非侵入性的便携式方法,为大脑网络动力学提供了有价值的见解。在这项研究中,我们使用近红外光谱(fNIRS)研究了人类大脑在双n-back任务中的功能连通性,这是一种不同记忆负荷(0-back, 1-back和2-back)的认知挑战。采集额叶皮质24个通道的数据,进行离散小波变换预处理。利用相关分析计算各任务级别的功能连通性矩阵,并对聚类系数、局部效率和全局效率等图论指标进行评估。统计比较(t检验和方差分析)揭示了这些指标在记忆负荷水平上的显著差异,更高的记忆负荷导致大脑连接模式的改变
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Processing
Cognitive Processing PSYCHOLOGY, EXPERIMENTAL-
CiteScore
3.10
自引率
5.90%
发文量
44
期刊介绍: Cognitive Processing - International Quarterly of Cognitive Science is a peer-reviewed international journal that publishes innovative contributions in the multidisciplinary field of cognitive science.  Its main purpose is to stimulate research and scientific interaction through communication between specialists in different fields on topics of common interest and to promote an interdisciplinary understanding of the diverse topics in contemporary cognitive science. Cognitive Processing is articulated in the following sections:Cognitive DevelopmentCognitive Models of Risk and Decision MakingCognitive NeuroscienceCognitive PsychologyComputational Cognitive SciencesPhilosophy of MindNeuroimaging and Electrophysiological MethodsPsycholinguistics and Computational linguisticsQuantitative Psychology and Formal Theories in Cognitive ScienceSocial Cognition and Cognitive Science of Culture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信