{"title":"Expression Pattern Study of miR-200a and XIAP Gene in the Non-small Cell Lung Cancer Patients’ Blood","authors":"Tara Fereydouni, Seyed Jalal Zargar, Sharareh Seifi, Mojgan Sheikhpour","doi":"10.61186/ibj.4354","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In non-small cell lung cancer (NSCLC), miR-200a plays a significant role in apoptosis. One of the genes involved in this pathway is XIAP, which has been shown anti-apoptotic activity. Research has indicated a significant association between miR-200a and the XIAP gene in this pathway. The present study investigated the expression profiles of miR-200a and the XIAP gene in NSCLC patients compared to normal individuals, as well as cancer cells compared to normal and apoptosis-inducing conditions.</p><p><strong>Methods: </strong>In this study, 40 blood specimens were collected from NSCLC patients and 40 from healthy individuals. After isolating plasma and peripheral blood mononuclear cells from these samples, we analyzed the miR-200a and XIAP gene expression levels using real-time PCR. Subsequently, normal and lung cancer cells were treated with paclitaxel as a model of apoptosis. The antiproliferative effects and induction of apoptosis were then evaluated using the MTT and flow cytometry assays, respectively. Finally, the expression patterns of miR-200a and the XIAP gene were investigated through a real-time PCR method.</p><p><strong>Results: </strong>Results indicated that the miR-200a expression level was lower in NSCLC patients than in healthy ones, while the expression level of XIAP gene increased in the NSCLC Patients’ blood. The MTT and flow cytometry results demonstrated a decreased proliferation and increased apoptosis rates in two lung line cells (A549 and MRC5) treated with paclitaxel. XIAP expression level also decreased in A549 cells treated with paclitaxel compared to untreated A549 cells.</p><p><strong>Conclusion: </strong>MiR-200a may be associated with the XIAP gene expression and the induction of the apoptosis pathway in NSCLC.</p>","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":"29 1 & 2","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/ibj.4354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In non-small cell lung cancer (NSCLC), miR-200a plays a significant role in apoptosis. One of the genes involved in this pathway is XIAP, which has been shown anti-apoptotic activity. Research has indicated a significant association between miR-200a and the XIAP gene in this pathway. The present study investigated the expression profiles of miR-200a and the XIAP gene in NSCLC patients compared to normal individuals, as well as cancer cells compared to normal and apoptosis-inducing conditions.
Methods: In this study, 40 blood specimens were collected from NSCLC patients and 40 from healthy individuals. After isolating plasma and peripheral blood mononuclear cells from these samples, we analyzed the miR-200a and XIAP gene expression levels using real-time PCR. Subsequently, normal and lung cancer cells were treated with paclitaxel as a model of apoptosis. The antiproliferative effects and induction of apoptosis were then evaluated using the MTT and flow cytometry assays, respectively. Finally, the expression patterns of miR-200a and the XIAP gene were investigated through a real-time PCR method.
Results: Results indicated that the miR-200a expression level was lower in NSCLC patients than in healthy ones, while the expression level of XIAP gene increased in the NSCLC Patients’ blood. The MTT and flow cytometry results demonstrated a decreased proliferation and increased apoptosis rates in two lung line cells (A549 and MRC5) treated with paclitaxel. XIAP expression level also decreased in A549 cells treated with paclitaxel compared to untreated A549 cells.
Conclusion: MiR-200a may be associated with the XIAP gene expression and the induction of the apoptosis pathway in NSCLC.