Strategy-Induced Strong Exchange Interaction for Enhancing High-Temperature Magnetic Loss in High-Entropy Alloy Powders

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zerui Li, Yuping Duan, Xiaoji Liu, Huifang Pang, Chenxu Dou, Yupeng Shi, Wei Chen
{"title":"Strategy-Induced Strong Exchange Interaction for Enhancing High-Temperature Magnetic Loss in High-Entropy Alloy Powders","authors":"Zerui Li, Yuping Duan, Xiaoji Liu, Huifang Pang, Chenxu Dou, Yupeng Shi, Wei Chen","doi":"10.1002/adfm.202507152","DOIUrl":null,"url":null,"abstract":"Magnetic loss in high-temperature microwave absorbers typically decreases sharply with rising temperature, limited by the Curie temperature (<i>T<sub>C</sub>)</i>. Conventional alloys rely on high-proportion additions of magnetic metals to enhance <i>T<sub>C</sub></i>; however, this approach increases electrical conductivity and causes impedance mismatch under high temperatures. In this study, a synergistic strategy for high-entropy alloy (HEA) powders is presented that reduces reliance on high magnetic metal content. This approach involves the formation of magnetic element-rich nanoparticles (MENPs) and the incorporation of the rare-earth element Gd, which effectively stabilizes ferromagnetic ordering at high temperatures. The FeCoCrAlGd<sub>0.2</sub> HEA exhibits a <i>T<sub>C</sub></i> of 947 °C and retains a saturation magnetization of 102 emu g<sup>−1</sup> from room temperature up to 700 °C. These intrinsic magnetic properties enable stable magnetic moment precession under high-temperature electromagnetic fields. Notably, the FeCoCrAlGd<sub>0.2</sub> alloy demonstrates significant magnetic loss even at 400 °C. Density functional theory (DFT) calculations indicate that the 3d and 4f electron bands in MENPs are closely aligned in energy levels, inducing strong exchange interactions and thermally stable ferromagnetic ordering in MENPs. This work presents a novel design strategy and research approach for magnetic HEAs, identifying a promising material for high-temperature microwave absorbers.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"20 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic loss in high-temperature microwave absorbers typically decreases sharply with rising temperature, limited by the Curie temperature (TC). Conventional alloys rely on high-proportion additions of magnetic metals to enhance TC; however, this approach increases electrical conductivity and causes impedance mismatch under high temperatures. In this study, a synergistic strategy for high-entropy alloy (HEA) powders is presented that reduces reliance on high magnetic metal content. This approach involves the formation of magnetic element-rich nanoparticles (MENPs) and the incorporation of the rare-earth element Gd, which effectively stabilizes ferromagnetic ordering at high temperatures. The FeCoCrAlGd0.2 HEA exhibits a TC of 947 °C and retains a saturation magnetization of 102 emu g−1 from room temperature up to 700 °C. These intrinsic magnetic properties enable stable magnetic moment precession under high-temperature electromagnetic fields. Notably, the FeCoCrAlGd0.2 alloy demonstrates significant magnetic loss even at 400 °C. Density functional theory (DFT) calculations indicate that the 3d and 4f electron bands in MENPs are closely aligned in energy levels, inducing strong exchange interactions and thermally stable ferromagnetic ordering in MENPs. This work presents a novel design strategy and research approach for magnetic HEAs, identifying a promising material for high-temperature microwave absorbers.

Abstract Image

策略诱导强交换相互作用增强高熵合金粉末高温磁损耗
受居里温度的限制,高温微波吸收器的磁损耗随温度的升高而急剧降低。传统合金依靠高比例的磁性金属添加来增强TC;然而,这种方法增加了电导率,并导致高温下的阻抗失配。在这项研究中,提出了一种协同策略,以减少对高磁性金属含量的依赖。这种方法涉及到磁性富元素纳米颗粒(MENPs)的形成和稀土元素Gd的掺入,这有效地稳定了高温下的铁磁有序。fecocalgd0.2 HEA的温度为947°C,从室温到700°C保持102 emu g−1的饱和磁化强度。这些固有的磁性能使得在高温电磁场下的磁矩进动稳定。值得注意的是,FeCoCrAlGd0.2合金即使在400°C时也表现出明显的磁损失。密度泛函理论(DFT)计算表明,MENPs中的3d和4f电子带在能级上紧密排列,在MENPs中产生强交换相互作用和热稳定的铁磁有序。本文提出了一种新的磁性HEAs设计策略和研究方法,确定了一种有前途的高温微波吸收材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信