Ultrafast Light-Driven Electronic and Structural Changes in LaFeO3 Perovskites Probed by Femtosecond X-Ray Absorption Spectroscopy

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Masoud Lazemi, Fabian J. Mohammad, Sang Han Park, Abhishek Katoch, Hans J.F.A. Blankesteijn, Andrés R. Botello-Méndez, Emma van der Minne, Yorick A. Birkhölzer, Iris C. G. van den Bosch, Ellen M. Kiens, Christoph Baeumer, Gertjan Koster, Soonnam Kwon, Uwe Bergmann, Frank M. F. de Groot
{"title":"Ultrafast Light-Driven Electronic and Structural Changes in LaFeO3 Perovskites Probed by Femtosecond X-Ray Absorption Spectroscopy","authors":"Masoud Lazemi,&nbsp;Fabian J. Mohammad,&nbsp;Sang Han Park,&nbsp;Abhishek Katoch,&nbsp;Hans J.F.A. Blankesteijn,&nbsp;Andrés R. Botello-Méndez,&nbsp;Emma van der Minne,&nbsp;Yorick A. Birkhölzer,&nbsp;Iris C. G. van den Bosch,&nbsp;Ellen M. Kiens,&nbsp;Christoph Baeumer,&nbsp;Gertjan Koster,&nbsp;Soonnam Kwon,&nbsp;Uwe Bergmann,&nbsp;Frank M. F. de Groot","doi":"10.1002/adma.202502932","DOIUrl":null,"url":null,"abstract":"<p>Conducting real-time, element-specific studies of photo-excited systems is a long-standing challenge. The development of X-ray free-electron lasers (XFELs) has paved the way for the emergence of a promising technique: femtosecond X-ray absorption spectroscopy (fs-XAS). This powerful technique reveals electronic and geometric characteristics, providing unprecedented insight into their dynamic interactions under nonequilibrium conditions. Herein, the fs-XAS technique is employed at PAL-XFEL to unravel light-driven ultrafast electronic and structural changes in epitaxial lanthanum iron oxide (LaFeO<sub>3</sub>) thin films. Density functional theory (DFT) and multiplet calculations are utilized to expound on the experimental results. The analyses reveal that photoexcitation initially induces high- and intermediate-spin Fe<sup>2+</sup> states through ligand-to-metal charge transfer (LMCT), followed by polaron formation. It is demonstrated that the reduced overlap between the oxygen 2<i>p</i> and iron 3<i>d</i> orbitals accounts for all experimental observations, including 1) the XAS shifts to lower energies, 2) the decrease in the crystal field splitting, and 3) the relatively larger shifts observed in the oxygen 1<i>s</i> XAS.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202502932","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502932","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting real-time, element-specific studies of photo-excited systems is a long-standing challenge. The development of X-ray free-electron lasers (XFELs) has paved the way for the emergence of a promising technique: femtosecond X-ray absorption spectroscopy (fs-XAS). This powerful technique reveals electronic and geometric characteristics, providing unprecedented insight into their dynamic interactions under nonequilibrium conditions. Herein, the fs-XAS technique is employed at PAL-XFEL to unravel light-driven ultrafast electronic and structural changes in epitaxial lanthanum iron oxide (LaFeO3) thin films. Density functional theory (DFT) and multiplet calculations are utilized to expound on the experimental results. The analyses reveal that photoexcitation initially induces high- and intermediate-spin Fe2+ states through ligand-to-metal charge transfer (LMCT), followed by polaron formation. It is demonstrated that the reduced overlap between the oxygen 2p and iron 3d orbitals accounts for all experimental observations, including 1) the XAS shifts to lower energies, 2) the decrease in the crystal field splitting, and 3) the relatively larger shifts observed in the oxygen 1s XAS.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

飞秒x射线吸收光谱探测LaFeO3钙钛矿的超快光驱动电子和结构变化
对光激发系统进行实时的、特定元素的研究是一个长期的挑战。x射线自由电子激光器(XFELs)的发展为一种有前途的技术的出现铺平了道路:飞秒x射线吸收光谱(fs-XAS)。这种强大的技术揭示了电子和几何特征,为非平衡条件下的动态相互作用提供了前所未有的见解。本文采用fs-XAS技术在PAL-XFEL上揭示了外延氧化镧(LaFeO3)薄膜的光驱动超快电子和结构变化。利用密度泛函理论(DFT)和多重计算对实验结果进行了阐述。分析表明,光激发首先通过配体到金属的电荷转移(LMCT)诱导高自旋和中自旋Fe2+态,然后形成极化子。结果表明,氧的2p轨道和铁的3d轨道之间重叠的减少可以解释所有的实验观察结果,包括:1)XAS向较低能量的位移,2)晶体场分裂的减少,以及3)在氧的1s XAS中观察到的相对较大的位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信