Investigation of the Effect of CT-Relative Electron Density Curves on Radiotherapy Dose Calculation.

IF 1.4 4区 医学 Q4 ENVIRONMENTAL SCIENCES
Taylan Tuğrul
{"title":"Investigation of the Effect of CT-Relative Electron Density Curves on Radiotherapy Dose Calculation.","authors":"Taylan Tuğrul","doi":"10.1097/HP.0000000000001990","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The computerized tomography scanners play a significant role in the radiotherapy treatment planning process. The electron density obtained from the CT-RED curve can be used to determine the structure of materials, and TPS calculates the dose based on the material's composition. Errors in this curve can lead to inaccuracies in dose estimation, particularly in heterogeneous tissues. In this study, the effect of variations in the CT-RED curve on the radiation dose calculated with different algorithms was also investigated. A virtual phantom was created by the TPS system for five different environments, including two low-density (HU:-750 and HU:-300) and two high-density (HU:750 and HU:300) materials. Four different erroneous CT-RED curves were created, representing -5%, -10%, +5%, and + 10% deviations from the original CT-RED curve. The positive deviations are more prominent in regions with low HU values. On the other hand, negative errors tend to be more noticeable in regions with higher HU values. This indicates that changes in dose discrepancies are not proportional to the variations in HU. Since the HU values are converted to RED by the TPS, inconsistencies in HU values ​​may lead to errors in the dose calculated by TPS. It is evident that errors in the CT-RED curve can affect the dose calculated by the TPS. However, it appears that this effect remains within acceptable limits. Given that different errors can combine to create significant differences, it is crucial not to overlook the importance of accurately transferring the CT-RED curve to the TPS.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001990","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: The computerized tomography scanners play a significant role in the radiotherapy treatment planning process. The electron density obtained from the CT-RED curve can be used to determine the structure of materials, and TPS calculates the dose based on the material's composition. Errors in this curve can lead to inaccuracies in dose estimation, particularly in heterogeneous tissues. In this study, the effect of variations in the CT-RED curve on the radiation dose calculated with different algorithms was also investigated. A virtual phantom was created by the TPS system for five different environments, including two low-density (HU:-750 and HU:-300) and two high-density (HU:750 and HU:300) materials. Four different erroneous CT-RED curves were created, representing -5%, -10%, +5%, and + 10% deviations from the original CT-RED curve. The positive deviations are more prominent in regions with low HU values. On the other hand, negative errors tend to be more noticeable in regions with higher HU values. This indicates that changes in dose discrepancies are not proportional to the variations in HU. Since the HU values are converted to RED by the TPS, inconsistencies in HU values ​​may lead to errors in the dose calculated by TPS. It is evident that errors in the CT-RED curve can affect the dose calculated by the TPS. However, it appears that this effect remains within acceptable limits. Given that different errors can combine to create significant differences, it is crucial not to overlook the importance of accurately transferring the CT-RED curve to the TPS.

ct相对电子密度曲线对放疗剂量计算影响的研究。
摘要:计算机断层扫描仪在放射治疗计划过程中起着重要作用。从CT-RED曲线得到的电子密度可以用来确定材料的结构,TPS根据材料的组成计算剂量。该曲线的误差可能导致剂量估计的不准确,特别是在异质组织中。本研究还探讨了CT-RED曲线的变化对不同算法计算的辐射剂量的影响。TPS系统为五种不同的环境创建了虚拟幻影,包括两种低密度(HU:-750和HU:-300)和两种高密度(HU:750和HU:300)材料。生成4条不同的错误CT-RED曲线,分别代表与原始CT-RED曲线的-5%、-10%、+5%和+ 10%的偏差。在HU值较低的地区,正偏差更为突出。另一方面,在HU值较高的地区,负误差往往更明显。这表明剂量差异的变化与HU的变化不成比例。由于HU值由TPS转换为RED,因此HU值的不一致可能导致TPS计算的剂量出现误差。很明显,CT-RED曲线的误差会影响TPS计算的剂量。然而,这种影响似乎仍在可接受的范围内。考虑到不同的误差可以组合在一起产生显著的差异,至关重要的是不要忽视准确地将CT-RED曲线转换为TPS的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信