{"title":"The diversity, pathogenic spectrum, and ecological significance of arthropod viruses.","authors":"Cixiu Li, Edward C Holmes, Weifeng Shi","doi":"10.1016/j.tim.2025.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>Research on arthropod viruses initially focused on those associated with diseases in vertebrates, particularly humans, as well as in plants of economic importance. However, the more recent deployment of metatranscriptomic sequencing of diverse arthropod species has facilitated the discovery of a multitude of novel arthropod viruses, in turn revealing that pathogenic viruses represent only a small component of the arthropod virome. In addition, arthropods may play a pivotal role in viral evolution and ecological dynamics, and have the potential to act as reservoirs for pathogens affecting vertebrates or plants. Due to active interactions between arthropod populations and diverse organisms - including fungi, plants, vertebrates, and even other arthropods in both aquatic and terrestrial ecosystems - there is an increased risk of the spillover of arthropod viruses to other organisms, including mammals. Herein, we review our current understanding of the diversity and ecology of arthropod viruses. We outline what is known about pathogenic arthropod viruses in diverse host types and emphasize the unique niche of arthropods as the source of emerging viral infectious diseases. Finally, we describe the evolutionary interactions between arthropod viruses and their hosts in ecosystems, at the same time highlighting their ecological significance with respect to regulating host populations.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.03.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research on arthropod viruses initially focused on those associated with diseases in vertebrates, particularly humans, as well as in plants of economic importance. However, the more recent deployment of metatranscriptomic sequencing of diverse arthropod species has facilitated the discovery of a multitude of novel arthropod viruses, in turn revealing that pathogenic viruses represent only a small component of the arthropod virome. In addition, arthropods may play a pivotal role in viral evolution and ecological dynamics, and have the potential to act as reservoirs for pathogens affecting vertebrates or plants. Due to active interactions between arthropod populations and diverse organisms - including fungi, plants, vertebrates, and even other arthropods in both aquatic and terrestrial ecosystems - there is an increased risk of the spillover of arthropod viruses to other organisms, including mammals. Herein, we review our current understanding of the diversity and ecology of arthropod viruses. We outline what is known about pathogenic arthropod viruses in diverse host types and emphasize the unique niche of arthropods as the source of emerging viral infectious diseases. Finally, we describe the evolutionary interactions between arthropod viruses and their hosts in ecosystems, at the same time highlighting their ecological significance with respect to regulating host populations.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.