Alfonso Cacace, Giovanna De Leva, Ilaria Di Lelio, Andrea Becchimanzi
{"title":"Immune-Related Genes in the Honey Bee Mite <i>Varroa destructor</i> (<i>Acarina, Parasitidae</i>).","authors":"Alfonso Cacace, Giovanna De Leva, Ilaria Di Lelio, Andrea Becchimanzi","doi":"10.3390/insects16040356","DOIUrl":null,"url":null,"abstract":"<p><p>Despite its ecological and economic importance, many aspects of <i>Varroa destructor</i>'s biology remain poorly understood, particularly its defense mechanisms against pathogens. The limited knowledge of <i>Varroa</i>'s immunity has hindered the development of RNA interference (RNAi)-based strategies targeting immune-related genes. In this study, we investigated the immune gene repertoire of <i>V. destructor</i> by querying its NCBI nr protein database and comparing it to model species of ticks (<i>Ixodes scapularis</i>) and mites (<i>Galendromus occidentalis</i> and <i>Tetranychus urticae</i>). Transcription of candidate immune genes was confirmed by analyzing a de novo assembled transcriptome of <i>V. destructor</i>. Our findings reveal that <i>V. destructor</i> shares key immunological traits with ticks, including lysozymes, chitinases, and thioester-containing proteins (TEPs), but also shares the absence of transmembrane peptidoglycan recognition proteins (PGRPs), Gram-negative binding proteins, and several lectin families involved in pathogen recognition. Additionally, <i>Varroa</i> mites, like ticks, lack homologs of crucial immune signaling components, such as the unpaired ligand (JAK/STAT), Eiger (JNK), and multiple elements of the IMD pathway. They also do not encode canonical antimicrobial peptides (AMPs) like defensins but possess putative homologs of ctenidins, AMPs previously identified in spiders and ticks, which may be adopted as a novel genetic readout for immune response in mites. Our findings lay the groundwork for future functional studies on mite immunity and open new avenues for RNAi-based biocontrol strategies targeting immune pathways to enhance <i>Varroa</i> management.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16040356","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite its ecological and economic importance, many aspects of Varroa destructor's biology remain poorly understood, particularly its defense mechanisms against pathogens. The limited knowledge of Varroa's immunity has hindered the development of RNA interference (RNAi)-based strategies targeting immune-related genes. In this study, we investigated the immune gene repertoire of V. destructor by querying its NCBI nr protein database and comparing it to model species of ticks (Ixodes scapularis) and mites (Galendromus occidentalis and Tetranychus urticae). Transcription of candidate immune genes was confirmed by analyzing a de novo assembled transcriptome of V. destructor. Our findings reveal that V. destructor shares key immunological traits with ticks, including lysozymes, chitinases, and thioester-containing proteins (TEPs), but also shares the absence of transmembrane peptidoglycan recognition proteins (PGRPs), Gram-negative binding proteins, and several lectin families involved in pathogen recognition. Additionally, Varroa mites, like ticks, lack homologs of crucial immune signaling components, such as the unpaired ligand (JAK/STAT), Eiger (JNK), and multiple elements of the IMD pathway. They also do not encode canonical antimicrobial peptides (AMPs) like defensins but possess putative homologs of ctenidins, AMPs previously identified in spiders and ticks, which may be adopted as a novel genetic readout for immune response in mites. Our findings lay the groundwork for future functional studies on mite immunity and open new avenues for RNAi-based biocontrol strategies targeting immune pathways to enhance Varroa management.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.