Qi Li, Nan Chen, Chenghua Liu, Zhen Zhao, Minjun Huang, Jingjing Li, Guang Yang
{"title":"<i>Staphylococcus aureus</i> β-hemolysin impairs oxygen transport without causing hemolysis.","authors":"Qi Li, Nan Chen, Chenghua Liu, Zhen Zhao, Minjun Huang, Jingjing Li, Guang Yang","doi":"10.1080/21505594.2025.2490208","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>) infection can lead to the occurrence of hypoxia, however, the underlying mechanisms have not been fully elucidated. β-hemolysin (Hlb) induced hemolysis of red blood cells (RBCs) requires a temperature transition from \"hot\" to \"cold,\" a phenomenon not observed under physiological conditions. In this study, we discovered that RBCs treated with Hlb exhibited a high level of intracellular Ca<sup>2+</sup> and underwent a shape transformation from biconcave discoid to spherical, which was contingent upon the degradation of sphingomyelin of the cell membrane and led to impaired oxygen transport. The increase in intracellular Ca<sup>2+</sup> levels induced by Hlb was dependent on the activation of the ion channel N-methyl-D-aspartate receptor. Furthermore, we found that Hlb-induced Ca<sup>2+</sup> influx increased the cytoplasmic pH and subsequently attenuated the oxygen release from RBCs, which were also observed in both <i>hlb</i> transgenic mice and a murine model with <i>S. aureus</i> challenge. Our findings reveal a novel role for Hlb as sphingomyelinase in impairing RBC function under non-lytic conditions, shedding light on the mechanism behind hypoxia associated with <i>S. aureus</i> infection.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2490208"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2490208","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus (S. aureus) infection can lead to the occurrence of hypoxia, however, the underlying mechanisms have not been fully elucidated. β-hemolysin (Hlb) induced hemolysis of red blood cells (RBCs) requires a temperature transition from "hot" to "cold," a phenomenon not observed under physiological conditions. In this study, we discovered that RBCs treated with Hlb exhibited a high level of intracellular Ca2+ and underwent a shape transformation from biconcave discoid to spherical, which was contingent upon the degradation of sphingomyelin of the cell membrane and led to impaired oxygen transport. The increase in intracellular Ca2+ levels induced by Hlb was dependent on the activation of the ion channel N-methyl-D-aspartate receptor. Furthermore, we found that Hlb-induced Ca2+ influx increased the cytoplasmic pH and subsequently attenuated the oxygen release from RBCs, which were also observed in both hlb transgenic mice and a murine model with S. aureus challenge. Our findings reveal a novel role for Hlb as sphingomyelinase in impairing RBC function under non-lytic conditions, shedding light on the mechanism behind hypoxia associated with S. aureus infection.
金黄色葡萄球菌(S. aureus)感染可导致缺氧的发生,然而,其潜在的机制尚未完全阐明。β-溶血素(Hlb)诱导的红细胞(rbc)溶血需要温度从“热”到“冷”的转变,这一现象在生理条件下是观察不到的。在这项研究中,我们发现用Hlb处理的红细胞表现出高水平的细胞内Ca2+,并经历了从双凹盘状到球形的形状转变,这取决于细胞膜鞘磷脂的降解,并导致氧气运输受损。Hlb诱导的细胞内Ca2+水平的增加依赖于离子通道n -甲基- d -天冬氨酸受体的激活。此外,我们发现hlb诱导的Ca2+内流增加了细胞质pH值,随后减弱了红细胞的氧释放,这也在hlb转基因小鼠和金黄色葡萄球菌攻毒的小鼠模型中观察到。我们的研究结果揭示了Hlb作为鞘磷脂酶在非溶解条件下损害红细胞功能的新作用,揭示了与金黄色葡萄球菌感染相关的缺氧背后的机制。
期刊介绍:
Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication.
Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.