Juan Pablo Diaz, Eduardo Pena, Samia El Alam, Cecilia Matte, Isaac Cortés, Leonardo Figueroa, Patricia Siques, Julio Brito
{"title":"<i>Chlorella vulgaris</i> Supplementation Attenuates Lead Accumulation, Oxidative Stress, and Memory Impairment in Rats.","authors":"Juan Pablo Diaz, Eduardo Pena, Samia El Alam, Cecilia Matte, Isaac Cortés, Leonardo Figueroa, Patricia Siques, Julio Brito","doi":"10.3390/toxics13040313","DOIUrl":null,"url":null,"abstract":"<p><p>Lead is a harmful heavy metal known to alter the environment and affect human health. Several industries have contributed to the increase in lead contamination, making it a major global concern. Thus, remediation strategies are necessary to prevent lead bioaccumulation and deleterious health effects. The aim of this study was to determine the capacity of the green microalga <i>Chlorella vulgaris</i> (<i>C. vulgaris</i> or CV) to remove lead in an animal model and prevent the accumulation of this heavy metal in the principal organs (brain, liver, and kidney) and blood. Forty male Wistar rats were randomly assigned to four groups (n = 10): control group (CT); <i>C. vulgaris</i> supplementation group, 5% of the diet (CV); lead acetate administration group, 500 ppm (Pb); and <i>C. vulgaris</i> supplementation group, 5% of the diet plus lead acetate administration group, 500 ppm (CV-Pb). After 4 weeks of exposure, we measured lead accumulation, memory function, oxidative stress, and antioxidant activity (SOD and GSH). Lead exposure altered memory function, increased oxidative stress in the brain and kidney, and increased SOD activity in the brain. Supplementation with <i>C. vulgaris</i> restored memory function to control levels; reduced oxidative stress in the brain and kidney; and decreased the accumulation of lead in the liver, kidney, and blood of rats exposed to lead. Based on our results, <i>C. vulgaris</i> is a lead chelating and antioxidant agent in animal models.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13040313","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lead is a harmful heavy metal known to alter the environment and affect human health. Several industries have contributed to the increase in lead contamination, making it a major global concern. Thus, remediation strategies are necessary to prevent lead bioaccumulation and deleterious health effects. The aim of this study was to determine the capacity of the green microalga Chlorella vulgaris (C. vulgaris or CV) to remove lead in an animal model and prevent the accumulation of this heavy metal in the principal organs (brain, liver, and kidney) and blood. Forty male Wistar rats were randomly assigned to four groups (n = 10): control group (CT); C. vulgaris supplementation group, 5% of the diet (CV); lead acetate administration group, 500 ppm (Pb); and C. vulgaris supplementation group, 5% of the diet plus lead acetate administration group, 500 ppm (CV-Pb). After 4 weeks of exposure, we measured lead accumulation, memory function, oxidative stress, and antioxidant activity (SOD and GSH). Lead exposure altered memory function, increased oxidative stress in the brain and kidney, and increased SOD activity in the brain. Supplementation with C. vulgaris restored memory function to control levels; reduced oxidative stress in the brain and kidney; and decreased the accumulation of lead in the liver, kidney, and blood of rats exposed to lead. Based on our results, C. vulgaris is a lead chelating and antioxidant agent in animal models.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.