Gilberto Padilla Mercado, Christopher Cook, Norman Adkins, Lucas Albrecht, Grace Cary, Brenda Edwards, Derik E Haggard, Nancy M Hanley, Michael F Hughes, Anna Jarnagin, Tirumala D Kodavanti, Evgenia Korol-Bexell, Anna Kreutz, Mayla Ngo, Caitlyn Patullo, Evelyn G Rowan, L McKenna Huse, Veronica A Correa, Branislav Kesic, Will Casey, Jennat Aboabdo, Kaitlyn Wolf, Risa Sayre, Bhaskar Sharma, Jonathan T Wall, Hiroshi Yamazaki, John F Wambaugh, Caroline L Ring
{"title":"Informatics for toxicokinetics.","authors":"Gilberto Padilla Mercado, Christopher Cook, Norman Adkins, Lucas Albrecht, Grace Cary, Brenda Edwards, Derik E Haggard, Nancy M Hanley, Michael F Hughes, Anna Jarnagin, Tirumala D Kodavanti, Evgenia Korol-Bexell, Anna Kreutz, Mayla Ngo, Caitlyn Patullo, Evelyn G Rowan, L McKenna Huse, Veronica A Correa, Branislav Kesic, Will Casey, Jennat Aboabdo, Kaitlyn Wolf, Risa Sayre, Bhaskar Sharma, Jonathan T Wall, Hiroshi Yamazaki, John F Wambaugh, Caroline L Ring","doi":"10.1007/s10928-025-09977-4","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicokinetic and pharmacokinetic (PK) summary parameters, such as C<sub>max</sub> (peak concentration), AUC (time-integrated area under the plasma concentration curve), and t<sub>1/2</sub> (elimination half-life from the body), are important information for understanding chemical safety in both pharmaceuticals and commercial industry. Although standardized tools exist for PK analysis of individual chemicals, new workflows can enhance chemoinformatic trend analysis. The Concentration versus Time Database (CvTdb) is a public repository of PK data at the U.S. Environmental Protection Agency (EPA). The CvTdb contains manually curated, standardized toxicokinetic data from hundreds of publications. Experimental time-course data of chemical concentrations in body fluids and tissues are extracted along with descriptive metadata. The advantage of standardized data is that it can be analyzed systematically. For example, we observe that 88.6% of replicate measurements of blood or plasma concentrations of chemicals after intravenous or oral dosing are within two-fold of the mean concentration. Although most experimental data have final timepoints within three days, some experiments extend up to a year, usually for long-lived chemicals. Here we have estimated PK parameters of CvTdb data using a custom R package, invivoPKfit. Standardized 1- and 2- compartmental PK model parameters were estimated using all data associated with a particular compound, including data that spans multiple references. We used invivoPKfit to estimate PK parameters such as volume of distribution (V<sub>d</sub>) and t<sub>1/2</sub>. The parameter values estimated with invivoPKfit are distributed similar to estimates made in the literature by a variety of methods. Overall, CvTdb serves as a standardized set of open data and for calibrating and evaluating PK models, while invivoPKfit allows for batch processing of this data type in a transparent and scalable manner. In addition to scientific insights, chemical risk assessment may be better informed by transparent, reproducible, and open-source workflows for PK informatics.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"30"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09977-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxicokinetic and pharmacokinetic (PK) summary parameters, such as Cmax (peak concentration), AUC (time-integrated area under the plasma concentration curve), and t1/2 (elimination half-life from the body), are important information for understanding chemical safety in both pharmaceuticals and commercial industry. Although standardized tools exist for PK analysis of individual chemicals, new workflows can enhance chemoinformatic trend analysis. The Concentration versus Time Database (CvTdb) is a public repository of PK data at the U.S. Environmental Protection Agency (EPA). The CvTdb contains manually curated, standardized toxicokinetic data from hundreds of publications. Experimental time-course data of chemical concentrations in body fluids and tissues are extracted along with descriptive metadata. The advantage of standardized data is that it can be analyzed systematically. For example, we observe that 88.6% of replicate measurements of blood or plasma concentrations of chemicals after intravenous or oral dosing are within two-fold of the mean concentration. Although most experimental data have final timepoints within three days, some experiments extend up to a year, usually for long-lived chemicals. Here we have estimated PK parameters of CvTdb data using a custom R package, invivoPKfit. Standardized 1- and 2- compartmental PK model parameters were estimated using all data associated with a particular compound, including data that spans multiple references. We used invivoPKfit to estimate PK parameters such as volume of distribution (Vd) and t1/2. The parameter values estimated with invivoPKfit are distributed similar to estimates made in the literature by a variety of methods. Overall, CvTdb serves as a standardized set of open data and for calibrating and evaluating PK models, while invivoPKfit allows for batch processing of this data type in a transparent and scalable manner. In addition to scientific insights, chemical risk assessment may be better informed by transparent, reproducible, and open-source workflows for PK informatics.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.