Effects of antifoam agents on Spodoptera frugiperda 9 cell growth and baculovirus infection dynamics.

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kristina Worch, Merlin Krause, Antje Burse
{"title":"Effects of antifoam agents on Spodoptera frugiperda 9 cell growth and baculovirus infection dynamics.","authors":"Kristina Worch, Merlin Krause, Antje Burse","doi":"10.1186/s13036-025-00516-w","DOIUrl":null,"url":null,"abstract":"<p><p>The baculovirus expression system is widely used for recombinant protein production. However, its scalability under shaking or stirring cultivation conditions remains a challenge due to foam formation which can negatively affect cell metabolism and viability, complicate process control, and ultimately lower productivity. Compared to other protein expression platforms, the effect of antifoam agents on insect cell culture has been rarely investigated. This study examines the influence of three antifoam agents-Antifoam 204 (AF204), polypropylene glycol (PPG), and a silicone-based compound (SAG471)-on Spodoptera frugiperda (Sf) 9 cell growth, viability, baculovirus infectivity, and infection dynamics. Dose-response experiments in adherent culture showed that high antifoam concentrations inhibited metabolic activity. In suspension culture, low concentrations of AF204 and PPG enhanced cell growth by reducing lag phase and population doubling time, while growth with SAG471 remained comparable to a no-antifoam control. In virus titer experiments, no effects on the plaque-forming ability of baculovirus particles could be observed. However, infection dynamics monitored in suspension cultures improved in the presence of all three antifoam agents, as shown by cell size increase, living cell stagnation, and enhanced single-cell fluorescence. Foam reduction experiments demonstrated that only SAG471 contributed to foam removal within a non-toxic concentration range. The results indicate that antifoam agents, depending on their concentration and composition, can enhance Sf9 cell growth and viability while potentially modulating cell membrane properties that could improve viral infection efficiency and transfection efficiency of exogenous material. This highlights the potential of antifoam agents for optimizing other virus-based expression systems in higher eukaryotic cells.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"43"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00516-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The baculovirus expression system is widely used for recombinant protein production. However, its scalability under shaking or stirring cultivation conditions remains a challenge due to foam formation which can negatively affect cell metabolism and viability, complicate process control, and ultimately lower productivity. Compared to other protein expression platforms, the effect of antifoam agents on insect cell culture has been rarely investigated. This study examines the influence of three antifoam agents-Antifoam 204 (AF204), polypropylene glycol (PPG), and a silicone-based compound (SAG471)-on Spodoptera frugiperda (Sf) 9 cell growth, viability, baculovirus infectivity, and infection dynamics. Dose-response experiments in adherent culture showed that high antifoam concentrations inhibited metabolic activity. In suspension culture, low concentrations of AF204 and PPG enhanced cell growth by reducing lag phase and population doubling time, while growth with SAG471 remained comparable to a no-antifoam control. In virus titer experiments, no effects on the plaque-forming ability of baculovirus particles could be observed. However, infection dynamics monitored in suspension cultures improved in the presence of all three antifoam agents, as shown by cell size increase, living cell stagnation, and enhanced single-cell fluorescence. Foam reduction experiments demonstrated that only SAG471 contributed to foam removal within a non-toxic concentration range. The results indicate that antifoam agents, depending on their concentration and composition, can enhance Sf9 cell growth and viability while potentially modulating cell membrane properties that could improve viral infection efficiency and transfection efficiency of exogenous material. This highlights the potential of antifoam agents for optimizing other virus-based expression systems in higher eukaryotic cells.

消泡剂对夜蛾细胞生长及杆状病毒感染动态的影响。
杆状病毒表达系统广泛用于重组蛋白的生产。然而,由于泡沫的形成会对细胞代谢和活力产生负面影响,使过程控制复杂化,最终降低生产率,因此在摇晃或搅拌培养条件下的可扩展性仍然是一个挑战。与其他蛋白表达平台相比,消泡剂对昆虫细胞培养的影响研究较少。本研究考察了三种消泡剂——消泡剂204 (AF204)、聚丙烯乙二醇(PPG)和硅基化合物(SAG471)对frugiperda Spodoptera (Sf) 9细胞生长、活力、杆状病毒感染性和感染动力学的影响。贴壁培养的剂量反应实验表明,高消泡剂浓度抑制代谢活性。在悬浮培养中,低浓度的AF204和PPG通过减少滞后期和群体倍增时间来促进细胞生长,而SAG471的生长与无消泡对照相当。在病毒滴度实验中,没有观察到对杆状病毒颗粒斑块形成能力的影响。然而,在所有三种消泡剂的存在下,悬浮培养中监测的感染动态得到改善,如细胞大小增加,活细胞停滞和单细胞荧光增强。泡沫还原实验表明,在无毒浓度范围内,只有SAG471对泡沫去除有贡献。结果表明,不同浓度和成分的消泡剂可以促进Sf9细胞的生长和活力,同时可能调节细胞膜的特性,从而提高病毒感染效率和外源物质的转染效率。这突出了消泡剂在优化其他真核细胞中基于病毒的表达系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信