Incorporating respiratory signals for machine learning-based multimodal sleep stage classification: a large-scale benchmark study with actigraphy and heart rate variability.
Daniel Krauss, Robert Richer, Arne Küderle, Jelena Jukic, Alexander German, Heike Leutheuser, Martin Regensburger, Jürgen Winkler, Bjoern M Eskofier
{"title":"Incorporating respiratory signals for machine learning-based multimodal sleep stage classification: a large-scale benchmark study with actigraphy and heart rate variability.","authors":"Daniel Krauss, Robert Richer, Arne Küderle, Jelena Jukic, Alexander German, Heike Leutheuser, Martin Regensburger, Jürgen Winkler, Bjoern M Eskofier","doi":"10.1093/sleep/zsaf091","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient sleep quality is directly linked to various diseases, making reliable sleep monitoring crucial for prevention, diagnosis, and treatment. As sleep laboratories are cost- and resource-prohibitive, wearable sensors offer a promising alternative for long-term unobtrusive sleep monitoring at home. Current unobtrusive sleep detection systems are mostly based on actigraphy (ACT) that tend to overestimate sleep due to a lack of movement in short periods of wakefulness. Previous research established sleep stage classification by combining ACT with cardiac information but has not investigated the incorporation of respiration in large-scale studies. For that reason, this work aims to systematically compare ACT-based sleep-stage classification with multimodal approaches combining ACT, heart rate variability (HRV) as well as respiration rate variability (RRV) using state-of-the-art machine- and deep learning algorithms. The evaluation is performed on a publicly available sleep dataset including more than 1000 recordings. Respiratory information is introduced through ECG-derived respiration features, which are evaluated against traditional respiration belt data. Results show that including RRV features improves the Matthews Correlation Coefficient (MCC), with long short-term memory (LSTM) algorithms performing best. For sleep staging based on AASM standards, the LSTM achieved a median MCC of 0.51 (0.16 IQR). Respiratory information enhanced classification performance, particularly in detecting wake and rapid eye movement (REM) sleep epochs. Our findings underscore the potential of including respiratory information in sleep analysis to improve sleep detection algorithms and, thus, help to transfer sleep laboratories into a home monitoring environment. The code used in this work can be found online at https://github.com/mad-lab-fau/sleep_analysis.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsaf091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Insufficient sleep quality is directly linked to various diseases, making reliable sleep monitoring crucial for prevention, diagnosis, and treatment. As sleep laboratories are cost- and resource-prohibitive, wearable sensors offer a promising alternative for long-term unobtrusive sleep monitoring at home. Current unobtrusive sleep detection systems are mostly based on actigraphy (ACT) that tend to overestimate sleep due to a lack of movement in short periods of wakefulness. Previous research established sleep stage classification by combining ACT with cardiac information but has not investigated the incorporation of respiration in large-scale studies. For that reason, this work aims to systematically compare ACT-based sleep-stage classification with multimodal approaches combining ACT, heart rate variability (HRV) as well as respiration rate variability (RRV) using state-of-the-art machine- and deep learning algorithms. The evaluation is performed on a publicly available sleep dataset including more than 1000 recordings. Respiratory information is introduced through ECG-derived respiration features, which are evaluated against traditional respiration belt data. Results show that including RRV features improves the Matthews Correlation Coefficient (MCC), with long short-term memory (LSTM) algorithms performing best. For sleep staging based on AASM standards, the LSTM achieved a median MCC of 0.51 (0.16 IQR). Respiratory information enhanced classification performance, particularly in detecting wake and rapid eye movement (REM) sleep epochs. Our findings underscore the potential of including respiratory information in sleep analysis to improve sleep detection algorithms and, thus, help to transfer sleep laboratories into a home monitoring environment. The code used in this work can be found online at https://github.com/mad-lab-fau/sleep_analysis.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.