J Alonso Tlali, J R Alvarado García, B Cardenas Castro, A Fernández Téllez, E G García Prieto, J F López-Olguín, Y Martínez Laguna, J E Ramírez, D Rosales Herrera, J D Silva Montiel
{"title":"Applications of Percolation Theory to Prevent the Propagation of Phytopathogens and Pests on Plantations.","authors":"J Alonso Tlali, J R Alvarado García, B Cardenas Castro, A Fernández Téllez, E G García Prieto, J F López-Olguín, Y Martínez Laguna, J E Ramírez, D Rosales Herrera, J D Silva Montiel","doi":"10.3390/e27040386","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important problems in agroecology is designing eco-friendly strategies to minimize the propagation of phytopathogens and pests. In this paper, we explore some strategies based on the modification of the plantation configuration together with percolation theory to prevent the propagation of phytopathogens and pests that move over nearest neighbor plants, such as the case of <i>Phytophthora</i> zoospores or pest mites. The percolation threshold is determined for well-mixed and intercropping plantations modeled in nearest neighbor square lattices. Our main result is that the best agroecology strategy consists of designing polyculture plantations to raise the net production yield.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040386","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most important problems in agroecology is designing eco-friendly strategies to minimize the propagation of phytopathogens and pests. In this paper, we explore some strategies based on the modification of the plantation configuration together with percolation theory to prevent the propagation of phytopathogens and pests that move over nearest neighbor plants, such as the case of Phytophthora zoospores or pest mites. The percolation threshold is determined for well-mixed and intercropping plantations modeled in nearest neighbor square lattices. Our main result is that the best agroecology strategy consists of designing polyculture plantations to raise the net production yield.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.