Human umbilical cord mesenchymal stem cell-derived exosomes promote osteogenesis in glucocorticoid-induced osteoporosis through PI3K/AKT signaling pathway-mediated ferroptosis inhibition.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Zhi-Meng Zhao, Jia-Ming Ding, Yu Li, Da-Chuan Wang, Ming-Jie Kuang
{"title":"Human umbilical cord mesenchymal stem cell-derived exosomes promote osteogenesis in glucocorticoid-induced osteoporosis through PI3K/AKT signaling pathway-mediated ferroptosis inhibition.","authors":"Zhi-Meng Zhao, Jia-Ming Ding, Yu Li, Da-Chuan Wang, Ming-Jie Kuang","doi":"10.1093/stcltm/szae096","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis, is characterized by significant bone loss, decreased bone quality, and increased fracture risk. The current treatments for GIOP have several drawbacks. Exosomes are vital for cellular processes. However, very few studies have focused on using human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) for GIOP treatment. In vitro and in vivo dexamethasone was used to evaluate the therapeutic effects of hUCMSC-EXOs on GIOP. CCK-8 and EdU assays were used to evaluate cell viability and proliferation, respectively. We conducted an alkaline phosphatase activity assay, alizarin red staining, Western blotting, and real-time PCR to detect the effect on osteogenesis. TMT-labeled quantitative proteomic and bioinformatic analyses were performed. Furthermore, we performed Western blotting, immunofluorescence, reactive oxygen species assays, and lipid peroxidation assays to investigate the regulatory mechanism by which hUCMSC-EXOs affect cell proliferation and osteogenic differentiation. The in vivo effects of hUCMSC-EXOs were evaluated using micro-CT, hematoxylin, and eosin staining, and immunohistochemical staining. We found that hUCMSC-EXOs reversed the inhibitory effects of glucocorticoids on human bone marrow stromal cell (hBMSC) proliferation and osteogenic differentiation and demonstrated that hUCMSC-EXOs reversed GIOP via the PI3K/AKT signaling pathway, inhibiting lipid peroxidation in vitro and in vivo. HUCMSC-EXOs promote hBMSC osteogenesis through the PI3K/AKT signaling pathway, inhibit ferroptosis, and have therapeutic potential for GIOP in mice.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Glucocorticoid-induced osteoporosis (GIOP), the most common cause of secondary osteoporosis, is characterized by significant bone loss, decreased bone quality, and increased fracture risk. The current treatments for GIOP have several drawbacks. Exosomes are vital for cellular processes. However, very few studies have focused on using human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) for GIOP treatment. In vitro and in vivo dexamethasone was used to evaluate the therapeutic effects of hUCMSC-EXOs on GIOP. CCK-8 and EdU assays were used to evaluate cell viability and proliferation, respectively. We conducted an alkaline phosphatase activity assay, alizarin red staining, Western blotting, and real-time PCR to detect the effect on osteogenesis. TMT-labeled quantitative proteomic and bioinformatic analyses were performed. Furthermore, we performed Western blotting, immunofluorescence, reactive oxygen species assays, and lipid peroxidation assays to investigate the regulatory mechanism by which hUCMSC-EXOs affect cell proliferation and osteogenic differentiation. The in vivo effects of hUCMSC-EXOs were evaluated using micro-CT, hematoxylin, and eosin staining, and immunohistochemical staining. We found that hUCMSC-EXOs reversed the inhibitory effects of glucocorticoids on human bone marrow stromal cell (hBMSC) proliferation and osteogenic differentiation and demonstrated that hUCMSC-EXOs reversed GIOP via the PI3K/AKT signaling pathway, inhibiting lipid peroxidation in vitro and in vivo. HUCMSC-EXOs promote hBMSC osteogenesis through the PI3K/AKT signaling pathway, inhibit ferroptosis, and have therapeutic potential for GIOP in mice.

人脐带间充质干细胞来源的外泌体通过PI3K/AKT信号通路介导的铁下沉抑制促进糖皮质激素诱导骨质疏松症的成骨。
糖皮质激素诱导的骨质疏松症(GIOP)是继发性骨质疏松症最常见的原因,其特点是骨质流失严重,骨质量下降,骨折风险增加。目前对GIOP的治疗有几个缺点。外泌体对细胞过程至关重要。然而,很少有研究关注使用人脐带间充质干细胞来源的外泌体(hUCMSC-EXOs)治疗GIOP。体外和体内采用地塞米松评价hUCMSC-EXOs对GIOP的治疗效果。CCK-8法和EdU法分别测定细胞活力和增殖能力。我们通过碱性磷酸酶活性测定、茜素红染色、Western blotting和real-time PCR检测其对成骨的影响。进行tmt标记的定量蛋白质组学和生物信息学分析。此外,我们通过Western blotting、免疫荧光、活性氧测定和脂质过氧化测定来研究hUCMSC-EXOs影响细胞增殖和成骨分化的调控机制。采用显微ct、苏木精染色、伊红染色和免疫组织化学染色评估hUCMSC-EXOs的体内作用。我们发现,hUCMSC-EXOs逆转了糖皮质激素对人骨髓基质细胞(hBMSC)增殖和成骨分化的抑制作用,并证明了hUCMSC-EXOs通过PI3K/AKT信号通路逆转GIOP,在体外和体内抑制脂质过氧化。HUCMSC-EXOs通过PI3K/AKT信号通路促进hBMSC成骨,抑制铁下垂,并具有治疗小鼠GIOP的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信