Electrohydrodynamic Vortex Imaging: A New Tool for Understanding Mass Transfer in Surface-Based Biosensors.

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
ELECTROPHORESIS Pub Date : 2025-05-10 DOI:10.1002/elps.8137
Pauline Zimmer, Oleh Andreiev, Marion Costella, Emmanuelle Laurenceau, Jean-François Bryche, Jean-Pierre Cloarec, Michael Canva, Marie Frénéa-Robin, Julien Marchalot
{"title":"Electrohydrodynamic Vortex Imaging: A New Tool for Understanding Mass Transfer in Surface-Based Biosensors.","authors":"Pauline Zimmer, Oleh Andreiev, Marion Costella, Emmanuelle Laurenceau, Jean-François Bryche, Jean-Pierre Cloarec, Michael Canva, Marie Frénéa-Robin, Julien Marchalot","doi":"10.1002/elps.8137","DOIUrl":null,"url":null,"abstract":"<p><p>Surface-based biosensor performance is generally limited by mass transfer, especially when detecting low-concentrated species. To address this, dielectrophoresis (DEP) and alternating current electroosmosis (ACEO) can be combined to enhance mass transfer, increasing the target concentration near the sensor. This article presents a method for real-time direct imaging of electrohydrodynamic (EHD) effects on a microparticle suspension within a microfluidic chamber enclosed by two opposing electrodes. This top-bottom configuration was poorly studied in the literature for ACEO. The system presented thereby allows measurements of fluid flow profiles perpendicular to the electrode surface. The velocity of fluorescent latex microsphere tracers was measured as a function of signal frequency, potential, and electrolyte conductivity. This setup enables direct observation of vortices and particle-depleted areas, offering a valuable tool for selecting optimal input parameters-such as electric field, conductivity, and electrode dimensions-to efficiently concentrate microparticles near the sensor. Additionally, a numerical model developed in COMSOL and adapted for this top-bottom configuration enhances understanding of key parameters influencing EHD phenomena.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.8137","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-based biosensor performance is generally limited by mass transfer, especially when detecting low-concentrated species. To address this, dielectrophoresis (DEP) and alternating current electroosmosis (ACEO) can be combined to enhance mass transfer, increasing the target concentration near the sensor. This article presents a method for real-time direct imaging of electrohydrodynamic (EHD) effects on a microparticle suspension within a microfluidic chamber enclosed by two opposing electrodes. This top-bottom configuration was poorly studied in the literature for ACEO. The system presented thereby allows measurements of fluid flow profiles perpendicular to the electrode surface. The velocity of fluorescent latex microsphere tracers was measured as a function of signal frequency, potential, and electrolyte conductivity. This setup enables direct observation of vortices and particle-depleted areas, offering a valuable tool for selecting optimal input parameters-such as electric field, conductivity, and electrode dimensions-to efficiently concentrate microparticles near the sensor. Additionally, a numerical model developed in COMSOL and adapted for this top-bottom configuration enhances understanding of key parameters influencing EHD phenomena.

电流体动力涡旋成像:一种理解表面生物传感器传质的新工具。
基于表面的生物传感器的性能通常受到传质的限制,特别是在检测低浓度物种时。为了解决这个问题,可以结合介质电泳(DEP)和交流电渗透(ACEO)来增强传质,增加传感器附近的目标浓度。本文提出了一种实时直接成像的方法,电流体动力学(EHD)的影响,微颗粒悬浮在一个微流体室由两个相对的电极封闭。这种自上而下的结构在ACEO的文献中研究得很少。因此提出的系统允许测量垂直于电极表面的流体流动剖面。荧光乳胶微球示踪剂的速度随信号频率、电位和电解质电导率的变化而变化。这种设置可以直接观察漩涡和颗粒耗尽区域,为选择最佳输入参数(如电场、电导率和电极尺寸)提供了有价值的工具,以有效地将微颗粒集中在传感器附近。此外,在COMSOL中开发的数值模型适用于这种自上而下的配置,增强了对影响EHD现象的关键参数的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信