Recent developments in sustained-release and targeted drug delivery applications of solid lipid nanoparticles.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Hanaa Ali Hussein, Fatin L Khaphi, Ramachandran Sivaramakrishnan, Sivamani Poornima, Mohd Azmuddin Abdullah
{"title":"Recent developments in sustained-release and targeted drug delivery applications of solid lipid nanoparticles.","authors":"Hanaa Ali Hussein, Fatin L Khaphi, Ramachandran Sivaramakrishnan, Sivamani Poornima, Mohd Azmuddin Abdullah","doi":"10.1080/02652048.2025.2495290","DOIUrl":null,"url":null,"abstract":"<p><p>Solid Lipid Nanoparticles (SLNs) are versatile nano-carriers for wide range of applications. The advantages of SLNs include ease of preparation, low toxicity, high active compound bioavailability, flexibility of incorporating hydrophilic and lipophilic drugs, and feasibility of large-scale production. This review provides an overview on the preparation methods of the SLNs, the micro and nanostructure characteristics of the SLNs, and the different factors influencing sustained release and targeted drug delivery. The applications in agriculture and environment, cosmetics, wound healing, malarial treatment, gene therapy and nano-vaccines, and cancer therapy, are elaborated. The mechanisms such as passive, active, and co-delivery are discussed. The issues, challenges and the way forward with ionisable SLNs for delivery of gene and vaccines, RAS-targeted therapy, and bioactive compounds, are highlighted. In combination with multiple compounds and the potential for integration with nature/bio-based solutions, SLNs are proven to be effective, and practical for diverse applications.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-31"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2495290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Solid Lipid Nanoparticles (SLNs) are versatile nano-carriers for wide range of applications. The advantages of SLNs include ease of preparation, low toxicity, high active compound bioavailability, flexibility of incorporating hydrophilic and lipophilic drugs, and feasibility of large-scale production. This review provides an overview on the preparation methods of the SLNs, the micro and nanostructure characteristics of the SLNs, and the different factors influencing sustained release and targeted drug delivery. The applications in agriculture and environment, cosmetics, wound healing, malarial treatment, gene therapy and nano-vaccines, and cancer therapy, are elaborated. The mechanisms such as passive, active, and co-delivery are discussed. The issues, challenges and the way forward with ionisable SLNs for delivery of gene and vaccines, RAS-targeted therapy, and bioactive compounds, are highlighted. In combination with multiple compounds and the potential for integration with nature/bio-based solutions, SLNs are proven to be effective, and practical for diverse applications.

固体脂质纳米颗粒缓释和靶向给药应用的最新进展。
固体脂质纳米颗粒(SLNs)是一种用途广泛的纳米载体。sln具有制备简单、毒性低、活性化合物生物利用度高、可灵活掺入亲水性和亲脂性药物、可大规模生产等优点。本文综述了sln的制备方法、微纳米结构特征以及影响sln缓释和靶向给药的不同因素。详细阐述了在农业和环境、化妆品、伤口愈合、疟疾治疗、基因治疗和纳米疫苗以及癌症治疗方面的应用。讨论了被动传递、主动传递和协同传递等机制。强调了用于递送基因和疫苗、ras靶向治疗和生物活性化合物的可电离sln的问题、挑战和前进方向。通过与多种化合物的结合以及与自然/生物基溶液整合的潜力,sln被证明是有效的,并且适用于各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信