{"title":"High-throughput strategies for monoclonal antibody screening: advances and challenges.","authors":"Xiao-Dong Wang, Bao-Ying Ma, Shi-Ying Lai, Xiang-Jing Cai, Yan-Guang Cong, Jun-Fa Xu, Peng-Fei Zhang","doi":"10.1186/s13036-025-00513-z","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies characterized by high affinity and specificity, developed through high-throughput screening and rapid preparation, are crucial to contemporary biomedical industry. Traditional antibody preparation via the hybridoma strategy faces challenges like low efficiency, long manufacturing cycles, batch variability and labor intensity. Advances in molecular biology and gene editing technologies offer revolutionary improvements in antibody production. New high-throughput technologies like antibody library display, single B cell antibody technologies, and single-cell sequencing have significantly cut costs and boosted the efficiency of antibody development. These innovations accelerate commercial applications of antibodies, meeting the biopharmaceutical industry's evolving demands. This review explores recent advancements in high-throughput development of antibody, highlighting their potential advantages over traditional methods and their promising future.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"41"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00513-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies characterized by high affinity and specificity, developed through high-throughput screening and rapid preparation, are crucial to contemporary biomedical industry. Traditional antibody preparation via the hybridoma strategy faces challenges like low efficiency, long manufacturing cycles, batch variability and labor intensity. Advances in molecular biology and gene editing technologies offer revolutionary improvements in antibody production. New high-throughput technologies like antibody library display, single B cell antibody technologies, and single-cell sequencing have significantly cut costs and boosted the efficiency of antibody development. These innovations accelerate commercial applications of antibodies, meeting the biopharmaceutical industry's evolving demands. This review explores recent advancements in high-throughput development of antibody, highlighting their potential advantages over traditional methods and their promising future.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.