Ionic liquid-iontophoresis mediates transdermal delivery of sparingly soluble drugs.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-04-21 DOI:10.1080/10717544.2025.2489730
Wenyan Gao, Wenmin Xing, Zhan Tang, Qiao Wang, Wenying Yu, Qi Zhang
{"title":"Ionic liquid-iontophoresis mediates transdermal delivery of sparingly soluble drugs.","authors":"Wenyan Gao, Wenmin Xing, Zhan Tang, Qiao Wang, Wenying Yu, Qi Zhang","doi":"10.1080/10717544.2025.2489730","DOIUrl":null,"url":null,"abstract":"<p><p>Low solubility restricted transdermal penetration of drugs. We aimed to develop a novel ionic liquid-iontophoresis (IL-IS) technology and assess their efficacy and primary factors in facilitating transdermal drug delivery. Five choline-based ILs with different chain length were synthesized and validated, and the impact of IL and/or IS technology on transdermal penetration of model drugs were investigated. The results indicated that five groups of ILs synthesized in this study exhibited minimal level of toxicity, and the longer the chain of acid ligands of ILs, the greater the cytotoxicity. The longer chain of acid ligand was demonstrated superior solubilizing capabilities compared to the shorter chain. Cinnamic acid-choline-based IL ([Cho] [Cin]) significantly improved permeation of all three model drugs, and permeation quantity was linearly positively associated with the concentration of ILs. The 10 h cumulative permeation of aripiprazole applied with ILs alone was enhanced by about 14-fold when paired with IS, and the penetration was linearly positively associated with the concentration and current strength of the ILs. <i>In vivo</i> results indicated that IL and/or IS technology primarily facilitated drug penetration into the skin, with potential involvement of endocytosis in this process. This study demonstrated that [Cho] [Cin] exhibited a significant enhancement in the transdermal delivery of three sparingly soluble drugs. It further enhanced the transdermal permeation of weak base drug following with the combining IL and IS technology. These findings highlighted that the IL-IS technology holded promise for facilitating the transdermal delivery of sparingly soluble and weak base drugs.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2489730"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2489730","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Low solubility restricted transdermal penetration of drugs. We aimed to develop a novel ionic liquid-iontophoresis (IL-IS) technology and assess their efficacy and primary factors in facilitating transdermal drug delivery. Five choline-based ILs with different chain length were synthesized and validated, and the impact of IL and/or IS technology on transdermal penetration of model drugs were investigated. The results indicated that five groups of ILs synthesized in this study exhibited minimal level of toxicity, and the longer the chain of acid ligands of ILs, the greater the cytotoxicity. The longer chain of acid ligand was demonstrated superior solubilizing capabilities compared to the shorter chain. Cinnamic acid-choline-based IL ([Cho] [Cin]) significantly improved permeation of all three model drugs, and permeation quantity was linearly positively associated with the concentration of ILs. The 10 h cumulative permeation of aripiprazole applied with ILs alone was enhanced by about 14-fold when paired with IS, and the penetration was linearly positively associated with the concentration and current strength of the ILs. In vivo results indicated that IL and/or IS technology primarily facilitated drug penetration into the skin, with potential involvement of endocytosis in this process. This study demonstrated that [Cho] [Cin] exhibited a significant enhancement in the transdermal delivery of three sparingly soluble drugs. It further enhanced the transdermal permeation of weak base drug following with the combining IL and IS technology. These findings highlighted that the IL-IS technology holded promise for facilitating the transdermal delivery of sparingly soluble and weak base drugs.

离子液体-离子透入介导少溶性药物的透皮递送。
低溶解度限制了药物的透皮渗透。我们旨在开发一种新的离子液体-离子透入(IL-IS)技术,并评估其促进经皮给药的功效和主要因素。合成并验证了5种不同链长的胆碱基IL,并研究了IL和/或IS技术对模型药物透皮渗透的影响。结果表明,本研究合成的5组il均表现出极低的毒性,且其酸配体链越长,细胞毒性越大。与短链酸配体相比,长链酸配体具有更好的增溶能力。肉桂酸-胆碱基IL ([Cho] [Cin])显著提高了三种模型药物的通透性,且通透量与IL浓度呈线性正相关。与IS配对时,阿立哌唑10 h的累积渗透性提高约14倍,渗透性与il浓度和电流强度呈线性正相关。体内实验结果表明,IL和/或IS技术主要促进药物渗透到皮肤中,在这一过程中可能涉及内吞作用。该研究表明[Cho] [Cin]在三种低溶性药物的透皮递送中表现出显著的增强作用。IL与IS技术的结合进一步增强了弱碱性药物的透皮渗透。这些发现突出表明,IL-IS技术有望促进低溶性和弱碱性药物的经皮递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信