{"title":"Recent Advances in Green Hydrogen Production by Electrolyzing Water with Anion-Exchange Membrane.","authors":"Lirong Zhang, Fang Qi, Rui Ren, Yulan Gu, Jiachen Gao, Yan Liang, Yafu Wang, Houen Zhu, Xiangyi Kong, Qingnuan Zhang, Jiangwei Zhang, Limin Wu","doi":"10.34133/research.0677","DOIUrl":null,"url":null,"abstract":"<p><p>The development of clean and efficient renewable energy is of great strategic importance to realize green energy conversion and low-carbon growth. Hydrogen energy, as a renewable energy with \"zero carbon emission\", can be efficiently converted into hydrogen energy and electric energy by electrolysis of water to hydrogen technology. Anion-exchange membrane water electrolysis (AEMWE), substantially advanced by nonprecious metal electrocatalysts, is among the most cost-effective and promising water electrolysis technologies, combining the advantages of proton exchange membranes with the proven technology of traditional alkaline water electrolysis and potentially eliminating the disadvantages of both. In this paper, the latest results of AEMWE research in recent years are summarized, including the AEMWE mechanism study and the hot issues of low-cost transition metal hydrogen evolution reaction and oxygen evolution reaction electrocatalyst design in recent years. The key factors affecting the performance of AEMWE are pointed out, and further challenges and opportunities encountered in large-scale industrialization are discussed. Finally, this review provides strong guidance for advancing AEMWE.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0677"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0677","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The development of clean and efficient renewable energy is of great strategic importance to realize green energy conversion and low-carbon growth. Hydrogen energy, as a renewable energy with "zero carbon emission", can be efficiently converted into hydrogen energy and electric energy by electrolysis of water to hydrogen technology. Anion-exchange membrane water electrolysis (AEMWE), substantially advanced by nonprecious metal electrocatalysts, is among the most cost-effective and promising water electrolysis technologies, combining the advantages of proton exchange membranes with the proven technology of traditional alkaline water electrolysis and potentially eliminating the disadvantages of both. In this paper, the latest results of AEMWE research in recent years are summarized, including the AEMWE mechanism study and the hot issues of low-cost transition metal hydrogen evolution reaction and oxygen evolution reaction electrocatalyst design in recent years. The key factors affecting the performance of AEMWE are pointed out, and further challenges and opportunities encountered in large-scale industrialization are discussed. Finally, this review provides strong guidance for advancing AEMWE.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.