Poly(ARTEMA), a novel artesunate-based polymer induces ferroptosis in breast cancer cells.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2025-03-24 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2025.2482514
Natsumi Ito, Ahmed Nabil, Koichiro Uto, Mitsuhiro Ebara
{"title":"Poly(ARTEMA), a novel artesunate-based polymer induces ferroptosis in breast cancer cells.","authors":"Natsumi Ito, Ahmed Nabil, Koichiro Uto, Mitsuhiro Ebara","doi":"10.1080/14686996.2025.2482514","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a form of non-apoptotic cell death, is emerging as a promising strategy for cancer therapy. Artesunate (ART), an extract obtained from the traditional Chinese medicine Qinghaosu, has been shown to exhibit anti-cancer activity by inducing ferroptosis in cancer cells. While previous research has focused on incorporating ART monomer into drug delivery systems for enhanced cancer targeting, this study presents 2-methacryloyloxyethyl ART polymer (poly(ARTEMA)), a novel polymer synthesized from ART for the first time. Our goal was evaluation of poly(ARTEMA) anticancer potential on breast cancer cells. First, we synthesized ARTEMA using esterification followed by its polymerization using the reversible addition-fragmentation chain transfer (RAFT) polymerization method. We evaluated its mechanism of action, focusing on two key pathways: temperature-triggered singlet oxygen generation and ferrous ions (Fe<sup>2+</sup>) release, both of which contribute to ferroptosis. Our results demonstrate that poly(ARTEMA) selectively generates singlet oxygen and Fe<sup>2+</sup> due to the endoperoxide crosslinks, leading to cell death in breast cancer cells. We also investigated the anti-cancer potential of poly(ARTEMA) on breast cancer cells with and without a ferroptosis inhibitor. The IC<sub>50</sub> values were 125 µM for the MCF-7 cancer cell line and 300 µM for the normal MCF-10 cell line, indicating enhanced toxicity toward cancer cell lines. These findings suggested that poly(ARTEMA) induces ferroptosis in cancer cells and may serve as a promising candidate for cancer therapy with minimal cytotoxicity. To the best of our knowledge, this report may be the first that successfully synthesized poly(ARTEMA) using ART, with its anticancer potential evaluation.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2482514"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2482514","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, a form of non-apoptotic cell death, is emerging as a promising strategy for cancer therapy. Artesunate (ART), an extract obtained from the traditional Chinese medicine Qinghaosu, has been shown to exhibit anti-cancer activity by inducing ferroptosis in cancer cells. While previous research has focused on incorporating ART monomer into drug delivery systems for enhanced cancer targeting, this study presents 2-methacryloyloxyethyl ART polymer (poly(ARTEMA)), a novel polymer synthesized from ART for the first time. Our goal was evaluation of poly(ARTEMA) anticancer potential on breast cancer cells. First, we synthesized ARTEMA using esterification followed by its polymerization using the reversible addition-fragmentation chain transfer (RAFT) polymerization method. We evaluated its mechanism of action, focusing on two key pathways: temperature-triggered singlet oxygen generation and ferrous ions (Fe2+) release, both of which contribute to ferroptosis. Our results demonstrate that poly(ARTEMA) selectively generates singlet oxygen and Fe2+ due to the endoperoxide crosslinks, leading to cell death in breast cancer cells. We also investigated the anti-cancer potential of poly(ARTEMA) on breast cancer cells with and without a ferroptosis inhibitor. The IC50 values were 125 µM for the MCF-7 cancer cell line and 300 µM for the normal MCF-10 cell line, indicating enhanced toxicity toward cancer cell lines. These findings suggested that poly(ARTEMA) induces ferroptosis in cancer cells and may serve as a promising candidate for cancer therapy with minimal cytotoxicity. To the best of our knowledge, this report may be the first that successfully synthesized poly(ARTEMA) using ART, with its anticancer potential evaluation.

聚(ARTEMA),一种新型的基于青蒿琥酯的聚合物诱导乳腺癌细胞铁下垂。
铁下垂是一种非凋亡细胞死亡的形式,正在成为一种有前途的癌症治疗策略。青蒿琥酯(ART)是一种从中药青菇中提取的提取物,已被证明通过诱导癌细胞铁凋亡而具有抗癌活性。虽然以前的研究主要集中在将ART单体结合到药物输送系统中以增强癌症靶向性,但本研究首次提出了2-甲基丙烯酰氧乙基ART聚合物(poly(ARTEMA)),这是一种由ART合成的新型聚合物。我们的目的是评估聚(ARTEMA)对乳腺癌细胞的抗癌潜力。首先,我们采用酯化法合成了ARTEMA,然后采用可逆加成-破碎链转移(RAFT)聚合法进行聚合。我们评估了其作用机制,重点关注两个关键途径:温度触发的单线态氧生成和铁离子(Fe2+)释放,这两个途径都有助于铁下垂。我们的研究结果表明,由于内过氧化物交联,聚(ARTEMA)选择性地产生单线态氧和Fe2+,导致乳腺癌细胞死亡。我们还研究了聚(ARTEMA)对有和没有铁下垂抑制剂的乳腺癌细胞的抗癌潜力。MCF-7细胞系的IC50值为125µM,正常MCF-10细胞系的IC50值为300µM,表明对癌细胞的毒性增强。这些发现表明,poly(ARTEMA)可诱导癌细胞铁下垂,并可能作为一种具有最小细胞毒性的癌症治疗的有希望的候选药物。据我们所知,这篇报道可能是第一个利用ART成功合成聚(ARTEMA)的报道,并对其抗癌潜力进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信