{"title":"Acot1 overexpression alleviates heart failure by inhibiting oxidative stress and cardiomyocyte apoptosis through the Keap1-Nrf2 pathway.","authors":"Xiaolu Hou, Guoling Hu, Heling Wang, Ying Yang, Qi Sun, Xiuping Bai","doi":"10.1538/expanim.24-0129","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a clinical syndrome related to multiple causes, including oxidative stress. Acyl-CoA thioesterase 1 (Acot1) is an enzyme in fatty acids metabolism, but it remains unclear in HF. Transverse aortic coarctation induced HF mouse model and hypoxia-stimulated cardiomyocyte (HL-1) model were established. Acot1 expression was down-regulated in heart tissues of HF mice. AAV9-mediated Acot1 overexpression improved cardiac function and pathological injury of heart tissues in TAC-induced HF mice. Acot1 overexpression ameliorated oxidative stress in heart tissues of HF mice and hypoxia-stimulated HL-1 cells, as indicated by reduced ROS and MDA levels and elevated SOD and GSH levels. We found that Acot1 overexpression inhibited apoptosis both in vivo and in vitro, with decreased protein levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Mechanically, Acot1 activated Keap1-Nrf2 pathway, leading to the nuclear translocation of Nrf2 and increased Nrf2-regulated gene NQO1 expression. Rescue experiment indicated that ML385 (Nrf2 inhibitor) abolished the effect of Acot1 overexpression on oxidative stress. Collectively, these results suggested that Acot1 overexpression protects heart from injury by inhibiting oxidative stress and apoptosis, possibly through activating Keap1-Nrf2 pathway.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.24-0129","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) is a clinical syndrome related to multiple causes, including oxidative stress. Acyl-CoA thioesterase 1 (Acot1) is an enzyme in fatty acids metabolism, but it remains unclear in HF. Transverse aortic coarctation induced HF mouse model and hypoxia-stimulated cardiomyocyte (HL-1) model were established. Acot1 expression was down-regulated in heart tissues of HF mice. AAV9-mediated Acot1 overexpression improved cardiac function and pathological injury of heart tissues in TAC-induced HF mice. Acot1 overexpression ameliorated oxidative stress in heart tissues of HF mice and hypoxia-stimulated HL-1 cells, as indicated by reduced ROS and MDA levels and elevated SOD and GSH levels. We found that Acot1 overexpression inhibited apoptosis both in vivo and in vitro, with decreased protein levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Mechanically, Acot1 activated Keap1-Nrf2 pathway, leading to the nuclear translocation of Nrf2 and increased Nrf2-regulated gene NQO1 expression. Rescue experiment indicated that ML385 (Nrf2 inhibitor) abolished the effect of Acot1 overexpression on oxidative stress. Collectively, these results suggested that Acot1 overexpression protects heart from injury by inhibiting oxidative stress and apoptosis, possibly through activating Keap1-Nrf2 pathway.
期刊介绍:
The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.