{"title":"Epitaxial lateral overgrowth of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by halide vapor phase epitaxy.","authors":"Yuichi Oshima, Takashi Shinohe","doi":"10.1080/14686996.2025.2485869","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrated the epitaxial lateral overgrowth of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> using halide vapor phase epitaxy. An <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub>/sapphire template with a patterned SiO<sub>2</sub> mask was used as the substrate. The highest lateral growth rate for a radial spoke-wheel patterned mask was obtained when the spoke was perpendicular to the <math> <mfenced><mrow><mn>11</mn> <mover><mn>2</mn> <mo>-</mo></mover> <mn>3</mn></mrow> </mfenced> </math> direction. In this case, the lateral-to-vertical growth rate ratio (<i>L</i>/<i>V</i> ratio), with <i>L</i> defined as the rate of increase in the width of an elongated α-Ga<sub>2</sub>O<sub>3</sub> island, was as large as 5.8. This ratio was greater than that reported for an <i>m</i>-direction stripe mask on <i>a</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by a factor of 3.3 and that for an <i>a</i>-direction stripe mask on <i>c</i>- and <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub> by a factor of 13. The epitaxial lateral overgrowth (ELO) of α-Ga<sub>2</sub>O<sub>3</sub> on a stripe mask (window/mask widths of 2.5 μm/7.5 μm) perpendicular to <math> <mfenced><mrow><mn>11</mn> <mover><mn>2</mn> <mo>-</mo></mover> <mn>3</mn></mrow> </mfenced> </math> resulted in the selective nucleation of elongated α-Ga<sub>2</sub>O<sub>3</sub> islands with a flat triangular cross-section on the window areas and their coalescence into a compact film. Transmission electron microscopy revealed that the dislocation density in the laterally grown area decreased drastically because the propagation of dislocations in the seed layer was effectively blocked by the mask. We believe these results greatly contribute to the realization of <i>m</i>-plane α-Ga<sub>2</sub>O<sub>3</sub>-based future power devices.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2485869"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2485869","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrated the epitaxial lateral overgrowth of m-plane α-Ga2O3 using halide vapor phase epitaxy. An m-plane α-Ga2O3/sapphire template with a patterned SiO2 mask was used as the substrate. The highest lateral growth rate for a radial spoke-wheel patterned mask was obtained when the spoke was perpendicular to the direction. In this case, the lateral-to-vertical growth rate ratio (L/V ratio), with L defined as the rate of increase in the width of an elongated α-Ga2O3 island, was as large as 5.8. This ratio was greater than that reported for an m-direction stripe mask on a-plane α-Ga2O3 by a factor of 3.3 and that for an a-direction stripe mask on c- and m-plane α-Ga2O3 by a factor of 13. The epitaxial lateral overgrowth (ELO) of α-Ga2O3 on a stripe mask (window/mask widths of 2.5 μm/7.5 μm) perpendicular to resulted in the selective nucleation of elongated α-Ga2O3 islands with a flat triangular cross-section on the window areas and their coalescence into a compact film. Transmission electron microscopy revealed that the dislocation density in the laterally grown area decreased drastically because the propagation of dislocations in the seed layer was effectively blocked by the mask. We believe these results greatly contribute to the realization of m-plane α-Ga2O3-based future power devices.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.