Arpit Mishra, Ezra J Margolin, Aaron W Stewart, Robert E Medairos, Jodi Antonelli, Glenn M Preminger, Pei Zhong, Michael E Lipkin
{"title":"Optimizing Fragmentation while Minimizing Thermal Injury Risk with the Thulium Fiber Laser in Ureteral Stone Lithotripsy: An In Vitro Study.","authors":"Arpit Mishra, Ezra J Margolin, Aaron W Stewart, Robert E Medairos, Jodi Antonelli, Glenn M Preminger, Pei Zhong, Michael E Lipkin","doi":"10.1089/end.2024.0637","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> To optimize thulium fiber laser (TFL) settings for effective stone fragmentation although minimizing thermal injury in confined ureteral spaces using a three-dimensional ureter model. <b><i>Materials and Methods:</i></b> A hydrogel-based ureter model was maintained at 37.2 ± 0.5°C, with a cylindrical BegoStone (10 × 10 mm, 1.00 ± 0.07 gm) occluding the ureter. Ureteroscopy was performed using a 150 µm TFL fiber for 3 minutes with room temperature irrigation and differing rates (0, 20, 40 mL/min) and power settings (6.4 to 20 W). Maximum sustained temperature (MST) and cumulative thermal dose (cumulative equivalent minutes at 43°C) were assessed against a 120-minute safety threshold. We also evaluated the effects of ureter volume and irrigation temperature. Stone mass treated was calculated by subtracting the mass of residual fragments >3 mm from the initial mass. <b><i>Results:</i></b> At 6.4 and 10 W, MSTs were below body temperature, and thermal doses were under 1 minute, indicating minimal thermal risk. At 20 W with 20 mL/min irrigation, MST exceeded 43°C within seconds, and thermal doses surpassed 120 minutes. Treatment efficiency was highest at 20 W (1.58 mg/s), followed by 10 W (1.15 mg/s) and 6.4 W (0.78 mg/s). Among 10 W settings, 1.0 J/10 Hz was more efficient than 2.0 J/5 Hz and 3.0 J/3 Hz. Safe settings produced 95.5% fine dust, whereas high-energy pulses 2-3 J produced significantly more fragments (1-3 mm) compared with settings with pulse energy 0.5-1.0 J. Increasing irrigation to 40 mL/min or using 15°C irrigation effectively reduced MST and improved efficiency, particularly at 20 W. <b><i>Conclusion:</i></b> Our study demonstrates the risk of thermal injury with 20 W TFL treatment. Conversely, 10 W settings at 2.0 J/5 Hz are safe and effective for fragmentation. Future research will focus on validating these optimal settings for human stone treatment.</p>","PeriodicalId":15723,"journal":{"name":"Journal of endourology","volume":" ","pages":"698-707"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endourology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/end.2024.0637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To optimize thulium fiber laser (TFL) settings for effective stone fragmentation although minimizing thermal injury in confined ureteral spaces using a three-dimensional ureter model. Materials and Methods: A hydrogel-based ureter model was maintained at 37.2 ± 0.5°C, with a cylindrical BegoStone (10 × 10 mm, 1.00 ± 0.07 gm) occluding the ureter. Ureteroscopy was performed using a 150 µm TFL fiber for 3 minutes with room temperature irrigation and differing rates (0, 20, 40 mL/min) and power settings (6.4 to 20 W). Maximum sustained temperature (MST) and cumulative thermal dose (cumulative equivalent minutes at 43°C) were assessed against a 120-minute safety threshold. We also evaluated the effects of ureter volume and irrigation temperature. Stone mass treated was calculated by subtracting the mass of residual fragments >3 mm from the initial mass. Results: At 6.4 and 10 W, MSTs were below body temperature, and thermal doses were under 1 minute, indicating minimal thermal risk. At 20 W with 20 mL/min irrigation, MST exceeded 43°C within seconds, and thermal doses surpassed 120 minutes. Treatment efficiency was highest at 20 W (1.58 mg/s), followed by 10 W (1.15 mg/s) and 6.4 W (0.78 mg/s). Among 10 W settings, 1.0 J/10 Hz was more efficient than 2.0 J/5 Hz and 3.0 J/3 Hz. Safe settings produced 95.5% fine dust, whereas high-energy pulses 2-3 J produced significantly more fragments (1-3 mm) compared with settings with pulse energy 0.5-1.0 J. Increasing irrigation to 40 mL/min or using 15°C irrigation effectively reduced MST and improved efficiency, particularly at 20 W. Conclusion: Our study demonstrates the risk of thermal injury with 20 W TFL treatment. Conversely, 10 W settings at 2.0 J/5 Hz are safe and effective for fragmentation. Future research will focus on validating these optimal settings for human stone treatment.
期刊介绍:
Journal of Endourology, JE Case Reports, and Videourology are the leading peer-reviewed journal, case reports publication, and innovative videojournal companion covering all aspects of minimally invasive urology research, applications, and clinical outcomes.
The leading journal of minimally invasive urology for over 30 years, Journal of Endourology is the essential publication for practicing surgeons who want to keep up with the latest surgical technologies in endoscopic, laparoscopic, robotic, and image-guided procedures as they apply to benign and malignant diseases of the genitourinary tract. This flagship journal includes the companion videojournal Videourology™ with every subscription. While Journal of Endourology remains focused on publishing rigorously peer reviewed articles, Videourology accepts original videos containing material that has not been reported elsewhere, except in the form of an abstract or a conference presentation.
Journal of Endourology coverage includes:
The latest laparoscopic, robotic, endoscopic, and image-guided techniques for treating both benign and malignant conditions
Pioneering research articles
Controversial cases in endourology
Techniques in endourology with accompanying videos
Reviews and epochs in endourology
Endourology survey section of endourology relevant manuscripts published in other journals.