My Phan, Hao Liu, Lina M Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F Cozzolino, Dimitri Pappas, Guigen Li
{"title":"The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers.","authors":"My Phan, Hao Liu, Lina M Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F Cozzolino, Dimitri Pappas, Guigen Li","doi":"10.3390/molecules30091981","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (<b>1A</b> to <b>1D</b>) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki-Miyaura cross-coupling over a four-day reaction period. Structures, thermal, and optical properties were examined using multiple analytical techniques. Fourier transform-infrared (FT-IR) spectroscopy was used to study the hydrogen bonding within the polymer system, suggesting the formation of the polymer through the Suzuki-Miyaura coupling reaction. Ultraviolet-visible (UV-vis) spectroscopy indicated strong electronic delocalization, with maximum absorbance peaks between 257 and 280 nm. Thermal characterization, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was used to investigate the thermal stability. TGA results showed that all four polymers retained more than 20% of their initial mass at 1000 °C, indicating good thermal stability across the series. DSC analysis revealed that polymer <b>1A</b> exhibited a glass transition temperature (Tg) of 167 °C, indicating the presence of a network formed by aromatic conjugation and hydrogen bonding. Furthermore, the subtle Tg step observed for <b>1A</b> suggests a degree of crystallinity within the polymer matrix, which was further supported by X-ray diffraction (XRD) analysis. Aggregation-induced emission (AIE) experiments provided further insights into intermolecular packing, and scanning electron microscopy (SEM) contributed to a better understanding of the morphology of the obtained polymers. These results highlight the potential of these polymers as thermally stable and conductive materials for biomedical and industrial applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30091981","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki-Miyaura cross-coupling over a four-day reaction period. Structures, thermal, and optical properties were examined using multiple analytical techniques. Fourier transform-infrared (FT-IR) spectroscopy was used to study the hydrogen bonding within the polymer system, suggesting the formation of the polymer through the Suzuki-Miyaura coupling reaction. Ultraviolet-visible (UV-vis) spectroscopy indicated strong electronic delocalization, with maximum absorbance peaks between 257 and 280 nm. Thermal characterization, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was used to investigate the thermal stability. TGA results showed that all four polymers retained more than 20% of their initial mass at 1000 °C, indicating good thermal stability across the series. DSC analysis revealed that polymer 1A exhibited a glass transition temperature (Tg) of 167 °C, indicating the presence of a network formed by aromatic conjugation and hydrogen bonding. Furthermore, the subtle Tg step observed for 1A suggests a degree of crystallinity within the polymer matrix, which was further supported by X-ray diffraction (XRD) analysis. Aggregation-induced emission (AIE) experiments provided further insights into intermolecular packing, and scanning electron microscopy (SEM) contributed to a better understanding of the morphology of the obtained polymers. These results highlight the potential of these polymers as thermally stable and conductive materials for biomedical and industrial applications.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.