{"title":"A Systematic Review of Spectroscopic Techniques for Detecting Milk Adulteration.","authors":"Parsa Joolaei Ahranjani, Kamine Dehghan, Zahra Esfandiari, Parham Joolaei Ahranjani","doi":"10.1080/10408347.2025.2477535","DOIUrl":null,"url":null,"abstract":"<p><p>Milk adulteration is a crucial worldwide concern that endangers food safety and public health, as it involves the deliberate tampering with milk by adding foreign substances or removing essential nutrients, often to boost profits or hinder microbial growth. Traditional detection methods frequently lack the sensitivity and speed required to identify adulterants within milk's complex matrix. This systematic review critically examines the application of spectroscopic techniques for detecting milk adulteration, focusing on Nuclear Magnetic Resonance (NMR), Infrared (IR) Spectroscopy, Raman Spectroscopy, Ultraviolet-Visible (UV-Vis) Spectroscopy, Mass Spectrometry, Laser-Based Techniques, Dielectric Spectroscopy, and X-Ray Spectroscopy. Each technique's principles, advantages, limitations, and specific applications in identifying adulterants, such as water, urea, melamine, added sugars, fats, preservatives, and heavy metals are discussed. The review highlights how these methods offer rapid, non-destructive, and sensitive analysis, enhancing the ability to detect adulterants at molecular levels. Despite advancements, challenges persist, including the complexity and natural variability of milk composition, high costs of advanced equipment, need for specialized expertise, and lack of standardized protocols. Future directions emphasize developing portable and cost-effective spectroscopic devices, integrating artificial intelligence and machine learning for advanced data analysis, and fostering international collaboration to establish standardized methodologies and comprehensive spectral databases. By addressing these challenges, spectroscopic techniques can be more widely implemented, ultimately safeguarding public health, ensuring the integrity of dairy products, and maintaining consumer trust in the global food supply chain.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-32"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2477535","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Milk adulteration is a crucial worldwide concern that endangers food safety and public health, as it involves the deliberate tampering with milk by adding foreign substances or removing essential nutrients, often to boost profits or hinder microbial growth. Traditional detection methods frequently lack the sensitivity and speed required to identify adulterants within milk's complex matrix. This systematic review critically examines the application of spectroscopic techniques for detecting milk adulteration, focusing on Nuclear Magnetic Resonance (NMR), Infrared (IR) Spectroscopy, Raman Spectroscopy, Ultraviolet-Visible (UV-Vis) Spectroscopy, Mass Spectrometry, Laser-Based Techniques, Dielectric Spectroscopy, and X-Ray Spectroscopy. Each technique's principles, advantages, limitations, and specific applications in identifying adulterants, such as water, urea, melamine, added sugars, fats, preservatives, and heavy metals are discussed. The review highlights how these methods offer rapid, non-destructive, and sensitive analysis, enhancing the ability to detect adulterants at molecular levels. Despite advancements, challenges persist, including the complexity and natural variability of milk composition, high costs of advanced equipment, need for specialized expertise, and lack of standardized protocols. Future directions emphasize developing portable and cost-effective spectroscopic devices, integrating artificial intelligence and machine learning for advanced data analysis, and fostering international collaboration to establish standardized methodologies and comprehensive spectral databases. By addressing these challenges, spectroscopic techniques can be more widely implemented, ultimately safeguarding public health, ensuring the integrity of dairy products, and maintaining consumer trust in the global food supply chain.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.