Meisam K Arjmandi, Kelly N Jahn, Charles B Hem, Julie G Arenberg
{"title":"Relationship Between Psychophysical Tuning Curves and Vowel Identification in Noise in Children and Adults With Cochlear Implants.","authors":"Meisam K Arjmandi, Kelly N Jahn, Charles B Hem, Julie G Arenberg","doi":"10.1044/2025_JSLHR-24-00270","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Perceptual outcomes in cochlear implant (CI) listeners are influenced by the quality of the interface between individual CI electrodes and their target auditory neurons (i.e., electrode-neuron interface [ENI]). Poor ENI increases the likelihood of CI channel interaction, which may lead to the smearing of sound frequency information, reduced spectral resolution, and, thus, errors in identifying speech sounds, particularly when there is background noise. This research note aims to present preliminary data on whether psychophysical tuning curves (PTCs), as a measure of channel interaction and an indirect measure of ENI, relate to vowel identification in noise in children and adults with CIs.</p><p><strong>Method: </strong>PTCs and medial vowel identification in four-talker babble noise were obtained for eight children (12 ears) and eight adults (eight ears) with CIs. PTCs were measured for one electrode in the middle of the array using direct stimulation and a standard two-interval, two-alternative forced choice procedure.</p><p><strong>Results: </strong>Adults and children with sharper PTCs performed better on vowel identification in noise (<i>F</i> = 6.63, <i>p =</i> .02), demonstrating an association between less channel interaction and better vowel identification in noise in CI listeners irrespective of age. Although no statistically significant difference was found between children and adults in their PTC sharpness, children performed better than adults on vowel identification in noise (<i>F</i> = 5.38, <i>p =</i> .034).</p><p><strong>Conclusions: </strong>The findings provide evidence that the sharpness of the PTC on a mid-array electrode is related to vowel identification in noise for CI listeners. Vowel identification in noise and PTC sharpness could be further investigated for use in developing personalized programming strategies that enhance the transmission of spectral cues crucial for recognizing vowel sounds.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":"68 5","pages":"2623-2633"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2025_JSLHR-24-00270","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Perceptual outcomes in cochlear implant (CI) listeners are influenced by the quality of the interface between individual CI electrodes and their target auditory neurons (i.e., electrode-neuron interface [ENI]). Poor ENI increases the likelihood of CI channel interaction, which may lead to the smearing of sound frequency information, reduced spectral resolution, and, thus, errors in identifying speech sounds, particularly when there is background noise. This research note aims to present preliminary data on whether psychophysical tuning curves (PTCs), as a measure of channel interaction and an indirect measure of ENI, relate to vowel identification in noise in children and adults with CIs.
Method: PTCs and medial vowel identification in four-talker babble noise were obtained for eight children (12 ears) and eight adults (eight ears) with CIs. PTCs were measured for one electrode in the middle of the array using direct stimulation and a standard two-interval, two-alternative forced choice procedure.
Results: Adults and children with sharper PTCs performed better on vowel identification in noise (F = 6.63, p = .02), demonstrating an association between less channel interaction and better vowel identification in noise in CI listeners irrespective of age. Although no statistically significant difference was found between children and adults in their PTC sharpness, children performed better than adults on vowel identification in noise (F = 5.38, p = .034).
Conclusions: The findings provide evidence that the sharpness of the PTC on a mid-array electrode is related to vowel identification in noise for CI listeners. Vowel identification in noise and PTC sharpness could be further investigated for use in developing personalized programming strategies that enhance the transmission of spectral cues crucial for recognizing vowel sounds.
期刊介绍:
Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work.
Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.