Multiscale and recursive unmixing of spatiotemporal rhythms for live-cell and intravital cardiac microscopy.

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Nature cardiovascular research Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1038/s44161-025-00649-7
Zhi Ling, Wenhao Liu, Kyungduck Yoon, Jessica Hou, Parvin Forghani, Xuanwen Hua, Hansol Yoon, Maryam Bagheri, Lakshmi P Dasi, Biagio Mandracchia, Chunhui Xu, Shuyi Nie, Shu Jia
{"title":"Multiscale and recursive unmixing of spatiotemporal rhythms for live-cell and intravital cardiac microscopy.","authors":"Zhi Ling, Wenhao Liu, Kyungduck Yoon, Jessica Hou, Parvin Forghani, Xuanwen Hua, Hansol Yoon, Maryam Bagheri, Lakshmi P Dasi, Biagio Mandracchia, Chunhui Xu, Shuyi Nie, Shu Jia","doi":"10.1038/s44161-025-00649-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases remain a pressing public health issue, necessitating the development of advanced therapeutic strategies underpinned by precise cardiac observations. While fluorescence microscopy is an invaluable tool for probing biological processes, cardiovascular signals are often complicated by persistent autofluorescence, overlaying dynamic cardiovascular entities and nonspecific labeling from tissue microenvironments. Here we present multiscale recursive decomposition for the precise extraction of dynamic cardiovascular signals. Multiscale recursive decomposition constructs a comprehensive framework for cardiac microscopy that includes pixel-wise image enhancement, robust principal component analysis and recursive motion segmentation. This method has been validated in various cardiac systems, including in vitro studies with human induced pluripotent stem cell-derived cardiomyocytes and in vivo studies of cardiovascular morphology and function in Xenopus embryos. The approach advances light-field cardiac microscopy, facilitating simultaneous, multiparametric and volumetric analysis of cardiac activities with minimum photodamage. We anticipate that the methodology will advance cardiovascular studies across a broad spectrum of cardiac models.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":"637-648"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00649-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases remain a pressing public health issue, necessitating the development of advanced therapeutic strategies underpinned by precise cardiac observations. While fluorescence microscopy is an invaluable tool for probing biological processes, cardiovascular signals are often complicated by persistent autofluorescence, overlaying dynamic cardiovascular entities and nonspecific labeling from tissue microenvironments. Here we present multiscale recursive decomposition for the precise extraction of dynamic cardiovascular signals. Multiscale recursive decomposition constructs a comprehensive framework for cardiac microscopy that includes pixel-wise image enhancement, robust principal component analysis and recursive motion segmentation. This method has been validated in various cardiac systems, including in vitro studies with human induced pluripotent stem cell-derived cardiomyocytes and in vivo studies of cardiovascular morphology and function in Xenopus embryos. The approach advances light-field cardiac microscopy, facilitating simultaneous, multiparametric and volumetric analysis of cardiac activities with minimum photodamage. We anticipate that the methodology will advance cardiovascular studies across a broad spectrum of cardiac models.

活细胞和活体心脏显微镜的时空节律的多尺度和递归解混。
心血管疾病仍然是一个紧迫的公共卫生问题,需要发展先进的治疗策略,以精确的心脏观察为基础。虽然荧光显微镜是探测生物过程的宝贵工具,但心血管信号往往因持续的自身荧光、覆盖动态心血管实体和来自组织微环境的非特异性标记而变得复杂。本文提出了一种多尺度递归分解方法来精确提取动态心血管信号。多尺度递归分解构建了一个全面的心脏显微镜框架,包括逐像素图像增强、鲁棒主成分分析和递归运动分割。该方法已在多种心脏系统中得到验证,包括人类诱导多能干细胞衍生的心肌细胞的体外研究以及非洲爪蟾胚胎心血管形态和功能的体内研究。该方法推进了光场心脏显微镜,促进了同时,多参数和体积分析心脏活动,最小的光损伤。我们预计该方法将在广泛的心脏模型中推进心血管研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信