{"title":"A stepwise emergence of evolution in the RNA world.","authors":"Philippe Nghe","doi":"10.1002/1873-3468.70065","DOIUrl":null,"url":null,"abstract":"<p><p>Building on experimental evidence and replicator theories, I propose a 3-stage scenario for a transition from autocatalysis into template-based replication of RNA, providing a pathway for the origin of life. In stage 1, self-reproduction occurs via autocatalysis using oligomer substrates, replicator viability relies on substrate-specificity, and heritable variations are mediated by structural interactions. In stage 2, autocatalysis coexists with the templated ligation of external substrates. This dual mode of reproduction combined with limited diffusion avoids the error catastrophe. In stage 3, template-based replication takes over and uses substrates of decreasing size, made possible by enhanced catalytic properties and compartmentalization. Structural complexity, catalytic efficiency, metabolic efficiency, and cellularization all evolve gradually and interdependently, ultimately leading to evolutionary processes similar to extant biology. Impact statement This perspective proposes a testable stepwise scenario for the emergence of evolution in an RNA origin of life. It shows how evolution could appear in a gradual manner, thanks to catalytic feedback among random mixtures of molecules. It highlights possible couplings between the different facets of molecular self-organization, which could bootstrap life.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Building on experimental evidence and replicator theories, I propose a 3-stage scenario for a transition from autocatalysis into template-based replication of RNA, providing a pathway for the origin of life. In stage 1, self-reproduction occurs via autocatalysis using oligomer substrates, replicator viability relies on substrate-specificity, and heritable variations are mediated by structural interactions. In stage 2, autocatalysis coexists with the templated ligation of external substrates. This dual mode of reproduction combined with limited diffusion avoids the error catastrophe. In stage 3, template-based replication takes over and uses substrates of decreasing size, made possible by enhanced catalytic properties and compartmentalization. Structural complexity, catalytic efficiency, metabolic efficiency, and cellularization all evolve gradually and interdependently, ultimately leading to evolutionary processes similar to extant biology. Impact statement This perspective proposes a testable stepwise scenario for the emergence of evolution in an RNA origin of life. It shows how evolution could appear in a gradual manner, thanks to catalytic feedback among random mixtures of molecules. It highlights possible couplings between the different facets of molecular self-organization, which could bootstrap life.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.