Yuanqin Cai, Xi Wang, Yang Xiang, Zhenning Wang, Qinghua Long, Chuhua Zeng
{"title":"<i>Codonopsis pilosula</i> polysaccharides alleviate neuronal apoptosis induced by endoplasmic reticulum stress-activated PERK-ATF4-CHOP signaling in APP/PS1 mice.","authors":"Yuanqin Cai, Xi Wang, Yang Xiang, Zhenning Wang, Qinghua Long, Chuhua Zeng","doi":"10.1177/13872877251339484","DOIUrl":null,"url":null,"abstract":"<p><p>Background<i>Codonopsis polysaccharides</i> (CPPs) shows neuroprotective potential in Alzheimer's disease (AD) and may reduce neuronal apoptosis by modulating endoplasmic reticulum stress (ERS).ObjectiveTo investigate the protective mechanisms of CPPs against neuronal apoptosis in APP/PS1 mice, focusing on the ERS response and the PERK-ATF4-CHOP signaling pathway.MethodsAPP/PS1 mice were orally administered CPPs at different doses. Their learning and memory abilities were evaluated using the Morris water maze (MWM). The integrity of hippocampal neurons and senile plaque deposition were assessed using histopathology, immunohistochemistry, and immunofluorescence. The expression of amyloid-β (Aβ) plaques secretase protein, ERS markers, and apoptosis-related proteins was assessed using western blot analyses. The affinity of the PERK-ATF4-CHOP pathway and CPPs was analyzed and assessed using molecular docking.ResultsMWM testing revealed that CPPs improved the learning and memory abilities of APP/PS1 mice. Histopathological examination confirmed that CPPs reduced hippocampal neuronal apoptosis. Immunohistochemistry and immunofluorescence analysis showed that CPPs decreased Aβ protein expression and ERS. Western blot analysis further confirmed that CPPs reduced the expression of proteins related to Aβ synthesis; downregulated the expression of glucose-regulated protein 78 (GRP78), PERK, ATF4, CHOP, and Bcl-2 associated X protein (Bax), while upregulating the expression of B-cell lymphoma 2 (Bcl-2).ConclusionsThis study demonstrates that CPPs exert neuroprotective effects by targeting the PERK-ATF4-CHOP signaling pathway and alleviating ERS, suggesting a novel approach and potential therapeutic agent for AD treatment.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251339484"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251339484","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundCodonopsis polysaccharides (CPPs) shows neuroprotective potential in Alzheimer's disease (AD) and may reduce neuronal apoptosis by modulating endoplasmic reticulum stress (ERS).ObjectiveTo investigate the protective mechanisms of CPPs against neuronal apoptosis in APP/PS1 mice, focusing on the ERS response and the PERK-ATF4-CHOP signaling pathway.MethodsAPP/PS1 mice were orally administered CPPs at different doses. Their learning and memory abilities were evaluated using the Morris water maze (MWM). The integrity of hippocampal neurons and senile plaque deposition were assessed using histopathology, immunohistochemistry, and immunofluorescence. The expression of amyloid-β (Aβ) plaques secretase protein, ERS markers, and apoptosis-related proteins was assessed using western blot analyses. The affinity of the PERK-ATF4-CHOP pathway and CPPs was analyzed and assessed using molecular docking.ResultsMWM testing revealed that CPPs improved the learning and memory abilities of APP/PS1 mice. Histopathological examination confirmed that CPPs reduced hippocampal neuronal apoptosis. Immunohistochemistry and immunofluorescence analysis showed that CPPs decreased Aβ protein expression and ERS. Western blot analysis further confirmed that CPPs reduced the expression of proteins related to Aβ synthesis; downregulated the expression of glucose-regulated protein 78 (GRP78), PERK, ATF4, CHOP, and Bcl-2 associated X protein (Bax), while upregulating the expression of B-cell lymphoma 2 (Bcl-2).ConclusionsThis study demonstrates that CPPs exert neuroprotective effects by targeting the PERK-ATF4-CHOP signaling pathway and alleviating ERS, suggesting a novel approach and potential therapeutic agent for AD treatment.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.