{"title":"Enhancing Low-Light High-Dynamic-Range Image from Industrial Cameras Using Dynamic Weighting and Pyramid Fusion.","authors":"Meihan Dong, Mengyang Chai, Yinnian Liu, Chengzhong Liu, Shibing Chu","doi":"10.3390/s25082452","DOIUrl":null,"url":null,"abstract":"<p><p>In order to solve the problem of imaging quality of industrial cameras for low-light and large dynamic scenes in many fields, such as smart city and target recognition, this study focuses on overcoming two core challenges: first, the loss of image details due to the significant difference in light distribution in complex scenes, and second, the coexistence of dark and light areas under the constraints of the limited dynamic range of a camera. To this end, we propose a low-light high-dynamic-range image enhancement method based on dynamic weights and pyramid fusion. In order to verify the effectiveness of the method, experimental data covering full-time scenes are acquired based on an image acquisition platform built in the laboratory, and a comprehensive evaluation system combining subjective visual assessment and objective indicators is constructed. The experimental results show that, in a multi-temporal fusion task, this study's method performs well in multiple key indicators such as information entropy (EN), average gradient (AG), edge intensity (EI), and spatial frequency (SF), making it especially suitable for imaging in low-light and high-dynamic-range environments. Specifically in localized low-light high-dynamic-range regions, compared with the best-performing comparison method, the information entropy indexes of this study's method are improved by 4.88% and 6.09%, which fully verifies its advantages in detail restoration. The research results provide a technical solution with all-day adaptive capability for low-cost and lightweight surveillance equipment, such as intelligent transportation systems and remote sensing security systems, which has broad application prospects.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25082452","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of imaging quality of industrial cameras for low-light and large dynamic scenes in many fields, such as smart city and target recognition, this study focuses on overcoming two core challenges: first, the loss of image details due to the significant difference in light distribution in complex scenes, and second, the coexistence of dark and light areas under the constraints of the limited dynamic range of a camera. To this end, we propose a low-light high-dynamic-range image enhancement method based on dynamic weights and pyramid fusion. In order to verify the effectiveness of the method, experimental data covering full-time scenes are acquired based on an image acquisition platform built in the laboratory, and a comprehensive evaluation system combining subjective visual assessment and objective indicators is constructed. The experimental results show that, in a multi-temporal fusion task, this study's method performs well in multiple key indicators such as information entropy (EN), average gradient (AG), edge intensity (EI), and spatial frequency (SF), making it especially suitable for imaging in low-light and high-dynamic-range environments. Specifically in localized low-light high-dynamic-range regions, compared with the best-performing comparison method, the information entropy indexes of this study's method are improved by 4.88% and 6.09%, which fully verifies its advantages in detail restoration. The research results provide a technical solution with all-day adaptive capability for low-cost and lightweight surveillance equipment, such as intelligent transportation systems and remote sensing security systems, which has broad application prospects.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.