Linear Wavelet-Based Estimators of Partial Derivatives of Multivariate Density Function for Stationary and Ergodic Continuous Time Processes.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-06 DOI:10.3390/e27040389
Sultana Didi, Salim Bouzebda
{"title":"Linear Wavelet-Based Estimators of Partial Derivatives of Multivariate Density Function for Stationary and Ergodic Continuous Time Processes.","authors":"Sultana Didi, Salim Bouzebda","doi":"10.3390/e27040389","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a wavelet-based framework for estimating the derivatives of a density function in the setting of continuous, stationary, and ergodic processes. Our primary focus is the derivation of the integrated mean square error (IMSE) over compact subsets of Rd, which provides a quantitative measure of the estimation accuracy. In addition, a uniform convergence rate and normality are established. To establish the asymptotic behavior of the proposed estimators, we adopt a martingale approach that accommodates the ergodic nature of the underlying processes. Importantly, beyond ergodicity, our analysis does not require additional assumptions regarding the data. By demonstrating that the wavelet methodology remains valid under these weaker dependence conditions, we extend earlier results originally developed in the context of independent observations.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040389","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a wavelet-based framework for estimating the derivatives of a density function in the setting of continuous, stationary, and ergodic processes. Our primary focus is the derivation of the integrated mean square error (IMSE) over compact subsets of Rd, which provides a quantitative measure of the estimation accuracy. In addition, a uniform convergence rate and normality are established. To establish the asymptotic behavior of the proposed estimators, we adopt a martingale approach that accommodates the ergodic nature of the underlying processes. Importantly, beyond ergodicity, our analysis does not require additional assumptions regarding the data. By demonstrating that the wavelet methodology remains valid under these weaker dependence conditions, we extend earlier results originally developed in the context of independent observations.

平稳和遍历连续时间过程中多元密度函数偏导数的线性小波估计。
在这项工作中,我们提出了一个基于小波的框架,用于估计密度函数在连续,平稳和遍历过程中的导数。我们的主要重点是推导Rd的紧凑子集上的积分均方误差(IMSE),它提供了估计精度的定量度量。此外,还建立了统一的收敛速率和正态性。为了建立所提出的估计量的渐近行为,我们采用了一种适应底层过程遍历性质的鞅方法。重要的是,除了遍历性之外,我们的分析不需要对数据进行额外的假设。通过证明小波方法在这些弱依赖性条件下仍然有效,我们扩展了最初在独立观测背景下开发的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信