{"title":"Associations between the performance of vertical jump and accelerative sprint in elite sprinters.","authors":"Junliang He, Ming Li, Qiuping Zhang, Zhiye Zhang","doi":"10.3389/fbioe.2025.1539197","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study is to investigate the relationship between components of the Sprint Profile during acceleration and kinematic and kinetic measures of the Counter Movement Jump (CMJ) and Squat Jump (SJ), to determine whether jump performance can monitor acceleration performance in sprinting.</p><p><strong>Methods: </strong>Eight elite sprinters offered to participate in the study (mean ± SD: age 21.43 ± 3.6 years; height 171.58 ± 7.76 cm; weight 54.71 ± 6.05 kg). The training age of athletes was 8.86 ± 4.30 years, which included SJ, CMJ, and accelerative sprint tests.</p><p><strong>Results: </strong>Significant negative correlations were found between propulsion time and braking time during sprint acceleration and CMJ metrics, including flight time, jump height, vertical take-off velocity, and push impulse (r = -0.598 to -0.721, <i>p</i> < 0.01). Similar associations were observed for SJ variables, though generally with slightly lower correlation strength. Ground contact time during sprinting was positively correlated with CMJ and SJ metrics (<i>p</i> < 0.05). Additionally, several sprint-phase kinetic variables-such as horizontal and vertical propulsion impulses-showed significant negative correlations with both CMJ and SJ outcomes. These findings suggest that specific jump performance measures, particularly from CMJ, may serve as effective monitor of acceleration sprint performance.</p><p><strong>Conclusion: </strong>This study confirms that key countermovement jump and squat jump metrics, especially jump height and flight time, are significantly associated with sprint acceleration in elite athletes. These findings support the use of jump tests as practical tools to monitor and enhance acceleration performance through targeted lower-limb power training.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1539197"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1539197","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The purpose of this study is to investigate the relationship between components of the Sprint Profile during acceleration and kinematic and kinetic measures of the Counter Movement Jump (CMJ) and Squat Jump (SJ), to determine whether jump performance can monitor acceleration performance in sprinting.
Methods: Eight elite sprinters offered to participate in the study (mean ± SD: age 21.43 ± 3.6 years; height 171.58 ± 7.76 cm; weight 54.71 ± 6.05 kg). The training age of athletes was 8.86 ± 4.30 years, which included SJ, CMJ, and accelerative sprint tests.
Results: Significant negative correlations were found between propulsion time and braking time during sprint acceleration and CMJ metrics, including flight time, jump height, vertical take-off velocity, and push impulse (r = -0.598 to -0.721, p < 0.01). Similar associations were observed for SJ variables, though generally with slightly lower correlation strength. Ground contact time during sprinting was positively correlated with CMJ and SJ metrics (p < 0.05). Additionally, several sprint-phase kinetic variables-such as horizontal and vertical propulsion impulses-showed significant negative correlations with both CMJ and SJ outcomes. These findings suggest that specific jump performance measures, particularly from CMJ, may serve as effective monitor of acceleration sprint performance.
Conclusion: This study confirms that key countermovement jump and squat jump metrics, especially jump height and flight time, are significantly associated with sprint acceleration in elite athletes. These findings support the use of jump tests as practical tools to monitor and enhance acceleration performance through targeted lower-limb power training.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.