HBO1 determines epithelial-mesenchymal transition and promotes immunotherapy resistance in ovarian cancer cells.

IF 4.8 2区 医学 Q2 CELL BIOLOGY
Cellular Oncology Pub Date : 2025-08-01 Epub Date: 2025-04-14 DOI:10.1007/s13402-025-01055-8
Cong Zhang, Jinmin Zhu, Huaisong Lin, Zhishuai Zhang, Baoqiang Kang, Fei Li, Yongli Shan, Yanqi Zhang, Qi Xing, Jiaming Gu, Xing Hu, Yuanbin Cui, Jingxi Huang, Tiancheng Zhou, Yuchan Mai, Qianyu Chen, Rui Mao, Peng Li, Guangjin Pan
{"title":"HBO1 determines epithelial-mesenchymal transition and promotes immunotherapy resistance in ovarian cancer cells.","authors":"Cong Zhang, Jinmin Zhu, Huaisong Lin, Zhishuai Zhang, Baoqiang Kang, Fei Li, Yongli Shan, Yanqi Zhang, Qi Xing, Jiaming Gu, Xing Hu, Yuanbin Cui, Jingxi Huang, Tiancheng Zhou, Yuchan Mai, Qianyu Chen, Rui Mao, Peng Li, Guangjin Pan","doi":"10.1007/s13402-025-01055-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Epithelial-mesenchymal transition (EMT) plays critical roles in tumor progress and treatment resistance of ovarian cancer (OC), resulting in the most deadly gynecological cancer in women. However, the cell-intrinsic mechanism underlying EMT in OC remains less illuminated.</p><p><strong>Method: </strong>SKOV3, the OC cell line, was treated with TGF-β to induce EMT or with SB431542, an inhibitor of the TGF-β signaling pathway, to reduce migration. The function of HBO1 in EMT was confirmed by knock-down or overexpression of HBO1 in SKOV3 cells. The role of HBO1 in cell proliferation and apoptosis of SKOV3 cells was analyzed by flow cytometry. The whole-genome transcriptome was used to compare significantly different genes in control and HBO1-KD SKOV3 cells. T-cell cytotoxicity assays were measured by an IVIS spectrum. The chromatin binding of HBO1 was investigated using CUT&Tag-seq.</p><p><strong>Results: </strong>Here, we show that HBO1, a MYST histone acetyltransferase (HAT), is a cell-intrinsic determinant for EMT in OC cells. HBO1 is greatly elevated during TGF-β-triggered EMT in SKOV3 OC cells as well as in later stages of clinical OC samples. HBO1 Knock-down (KD) in SKOV3 cells blocks TGF-β-triggered EMT, migration, invasion and tumor formation in vivo. Interestingly, HBO1 KD in SKOV3 cells suppresses their resistance to CAR-T cells. Mechanistically, HBO1 co-binds the gene sets responsible for EMT with SMAD4 and orchestrates a gene regulatory network critical for tumor progression in SKOV3 cells.</p><p><strong>Conclusion: </strong>HBO1 plays an essential onco-factor to drive EMT and promote the immunotherapy resistance in ovarian cancer cells. Together, we reveal a critical role of HBO1 mediated epigenetic mechanism in OC progression, providing an insight into designing new therapy strategies.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"943-959"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01055-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Epithelial-mesenchymal transition (EMT) plays critical roles in tumor progress and treatment resistance of ovarian cancer (OC), resulting in the most deadly gynecological cancer in women. However, the cell-intrinsic mechanism underlying EMT in OC remains less illuminated.

Method: SKOV3, the OC cell line, was treated with TGF-β to induce EMT or with SB431542, an inhibitor of the TGF-β signaling pathway, to reduce migration. The function of HBO1 in EMT was confirmed by knock-down or overexpression of HBO1 in SKOV3 cells. The role of HBO1 in cell proliferation and apoptosis of SKOV3 cells was analyzed by flow cytometry. The whole-genome transcriptome was used to compare significantly different genes in control and HBO1-KD SKOV3 cells. T-cell cytotoxicity assays were measured by an IVIS spectrum. The chromatin binding of HBO1 was investigated using CUT&Tag-seq.

Results: Here, we show that HBO1, a MYST histone acetyltransferase (HAT), is a cell-intrinsic determinant for EMT in OC cells. HBO1 is greatly elevated during TGF-β-triggered EMT in SKOV3 OC cells as well as in later stages of clinical OC samples. HBO1 Knock-down (KD) in SKOV3 cells blocks TGF-β-triggered EMT, migration, invasion and tumor formation in vivo. Interestingly, HBO1 KD in SKOV3 cells suppresses their resistance to CAR-T cells. Mechanistically, HBO1 co-binds the gene sets responsible for EMT with SMAD4 and orchestrates a gene regulatory network critical for tumor progression in SKOV3 cells.

Conclusion: HBO1 plays an essential onco-factor to drive EMT and promote the immunotherapy resistance in ovarian cancer cells. Together, we reveal a critical role of HBO1 mediated epigenetic mechanism in OC progression, providing an insight into designing new therapy strategies.

HBO1决定卵巢癌细胞上皮-间质转化并促进免疫治疗抵抗。
目的:上皮间充质转化(Epithelial-mesenchymal transition, EMT)在卵巢癌(ovarian cancer, OC)的肿瘤进展和治疗耐药中起关键作用,是女性最致命的妇科癌症。然而,细胞内在机制的潜在EMT在OC仍不清楚。方法:用TGF-β处理OC细胞株SKOV3诱导EMT或用TGF-β信号通路抑制剂SB431542减少迁移。HBO1在EMT中的功能通过SKOV3细胞中HBO1的敲除或过表达得到证实。流式细胞术分析HBO1在SKOV3细胞增殖和凋亡中的作用。使用全基因组转录组比较对照和HBO1-KD SKOV3细胞中显著不同的基因。t细胞毒性测定采用紫外光谱法。利用CUT&Tag-seq研究HBO1的染色质结合。结果:在这里,我们发现HBO1,一种MYST组蛋白乙酰转移酶(HAT),是OC细胞中EMT的细胞内在决定因素。在SKOV3 OC细胞TGF-β触发的EMT过程中以及临床OC样本的后期,HBO1显著升高。SKOV3细胞HBO1 Knock-down (KD)在体内阻断TGF-β触发的EMT、迁移、侵袭和肿瘤形成。有趣的是,SKOV3细胞中的HBO1 KD抑制了它们对CAR-T细胞的抗性。从机制上讲,HBO1将负责EMT的基因集与SMAD4共同结合,并协调SKOV3细胞中对肿瘤进展至关重要的基因调控网络。结论:HBO1在卵巢癌细胞EMT驱动和免疫治疗抵抗中发挥重要促癌因子作用。总之,我们揭示了HBO1介导的表观遗传机制在OC进展中的关键作用,为设计新的治疗策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信