{"title":"Enhancing vaccine stability in transdermal microneedle platforms.","authors":"Suman Pahal, Feifei Huang, Parbeen Singh, Nidhi Sharma, Hoang-Phuc Pham, Thi Bao Tram Tran, Aseno Sakhrie, Hasan Akbaba, Thanh Duc Nguyen","doi":"10.1007/s13346-025-01854-4","DOIUrl":null,"url":null,"abstract":"<p><p>Micron-scale needles, so-called microneedles (MNs) offer a minimally invasive, nearly painless, and user-friendly method for effective intradermal immunization. Maintaining the stability of antigens and therapeutics is the primary challenge in producing vaccine or drug-loaded MNs. The manufacturing of MNs patches involves processes at ambient or higher temperatures and various physio-mechanical stresses that can impact the therapeutic efficacy of sensitive biologics or vaccines. Therefore, it is crucial to develop techniques that safeguard vaccines and other biological payloads within MNs. Despite growing research interest in deploying MNs as an efficient tool for delivering vaccines, there is no comprehensive review that integrates the strategies and efforts to preserve the thermostability of vaccine payloads to ensure compatibility with MNs fabrication. The discussion delves into various physical and chemical approaches for stabilizing antigens in vaccine formulations, which are subsequently integrated into the MNs matrix. The primary focus is to comprehensively examine the challenges associated with the translation of thermostable vaccine MNs for clinical applications while considering a safe, cost-effective approach with a regulatory roadmap. The recent cutting-edge advances facilitating flexible and scalable manufacturing of stabilized MNs patches have been emphasized. In conclusion, the ability to stabilize vaccines and therapeutics for MNs applications could bolster the effectiveness, safety and user-compliance for various drugs and vaccines, potentially offering a substantial impact on global public health.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01854-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Micron-scale needles, so-called microneedles (MNs) offer a minimally invasive, nearly painless, and user-friendly method for effective intradermal immunization. Maintaining the stability of antigens and therapeutics is the primary challenge in producing vaccine or drug-loaded MNs. The manufacturing of MNs patches involves processes at ambient or higher temperatures and various physio-mechanical stresses that can impact the therapeutic efficacy of sensitive biologics or vaccines. Therefore, it is crucial to develop techniques that safeguard vaccines and other biological payloads within MNs. Despite growing research interest in deploying MNs as an efficient tool for delivering vaccines, there is no comprehensive review that integrates the strategies and efforts to preserve the thermostability of vaccine payloads to ensure compatibility with MNs fabrication. The discussion delves into various physical and chemical approaches for stabilizing antigens in vaccine formulations, which are subsequently integrated into the MNs matrix. The primary focus is to comprehensively examine the challenges associated with the translation of thermostable vaccine MNs for clinical applications while considering a safe, cost-effective approach with a regulatory roadmap. The recent cutting-edge advances facilitating flexible and scalable manufacturing of stabilized MNs patches have been emphasized. In conclusion, the ability to stabilize vaccines and therapeutics for MNs applications could bolster the effectiveness, safety and user-compliance for various drugs and vaccines, potentially offering a substantial impact on global public health.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.