{"title":"Phenolic-loaded nanofiber from Arctium lappa root: a potential therapy for testosterone-induced ovarian oxidative stress.","authors":"Viana Khojasteh, Seyed Amirmohammad Mollanorouzi, Ehsan Karimi, Behrouz Ghorani, Ehsan Oskoueian","doi":"10.1186/s13036-025-00515-x","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic Ovary Syndrome (PCOS) is a hormonal disorder affecting women of reproductive age, often associated with oxidative stress and inflammation. This study explores the therapeutic potential of Arctium lappa phenolic-rich fraction encapsulated nanofiber (ALPRF-NF) in a testosterone-induced PCOS mouse model. All experiments were performed in triplicate and Duncan's Multiple Range Test was used to assess significant differences between means, with significance determined at p < 0.05. The ALPRF-NF formulation demonstrated favorable physicochemical properties, including a ribbon-like structure (216.9 nm), a zeta potential of -19.3 mV, and a high encapsulation efficiency (93.1%). In vivo findings showed that ALPRF-NF significantly improved body weight, feed intake, and liver enzyme profiles in PCOS-induced mice (p ≤ 0.05). It also enhanced the antioxidant defense system by elevating levels of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT). Mechanistically, ALPRF-NF reduced oxidative stress and inflammation by delivering phenolic compounds that scavenge reactive oxygen species (ROS) and modulate gene expression in ovarian tissue. This included downregulation of inducible nitric oxide synthase (iNOS) and upregulation of SOD expression. These results suggest that ALPRF-NF effectively mitigates testosterone-induced ovarian oxidative damage and inflammation, offering a targeted, nanotechnology-based therapeutic approach for PCOS. The study provides valuable insights into novel strategies for improving women's reproductive health through bioactive compound delivery.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"42"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00515-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Polycystic Ovary Syndrome (PCOS) is a hormonal disorder affecting women of reproductive age, often associated with oxidative stress and inflammation. This study explores the therapeutic potential of Arctium lappa phenolic-rich fraction encapsulated nanofiber (ALPRF-NF) in a testosterone-induced PCOS mouse model. All experiments were performed in triplicate and Duncan's Multiple Range Test was used to assess significant differences between means, with significance determined at p < 0.05. The ALPRF-NF formulation demonstrated favorable physicochemical properties, including a ribbon-like structure (216.9 nm), a zeta potential of -19.3 mV, and a high encapsulation efficiency (93.1%). In vivo findings showed that ALPRF-NF significantly improved body weight, feed intake, and liver enzyme profiles in PCOS-induced mice (p ≤ 0.05). It also enhanced the antioxidant defense system by elevating levels of glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT). Mechanistically, ALPRF-NF reduced oxidative stress and inflammation by delivering phenolic compounds that scavenge reactive oxygen species (ROS) and modulate gene expression in ovarian tissue. This included downregulation of inducible nitric oxide synthase (iNOS) and upregulation of SOD expression. These results suggest that ALPRF-NF effectively mitigates testosterone-induced ovarian oxidative damage and inflammation, offering a targeted, nanotechnology-based therapeutic approach for PCOS. The study provides valuable insights into novel strategies for improving women's reproductive health through bioactive compound delivery.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.