Intramolecular Versus Intermolecular Diels-Alder Reactions: Insights from Molecular Electron Density Theory.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Luis R Domingo, Patricia Pérez
{"title":"Intramolecular Versus Intermolecular Diels-Alder Reactions: Insights from Molecular Electron Density Theory.","authors":"Luis R Domingo, Patricia Pérez","doi":"10.3390/molecules30092052","DOIUrl":null,"url":null,"abstract":"<p><p>The intramolecular Diels-Alder (IMDA) reactions of four substituted deca-1,3,9-trienes and one N-methyleneocta-5,7-dien-1-aminium with different electrophilic/nucleophilic activations have been studied within the Molecular Electron Density Theory (MEDT) and compared to their intermolecular processes. The topological analysis of the electron density and DFT-based reactivity indices reveal that substitution does not modify neither the electronic structure nor the reactivity of the reagents relative to those involved in the intermolecular processes. The analysis of the relative energies establishes that the accelerations found in the polar IMDA reactions follow the same trend as those found in the intermolecular processes. The geometries and the electronic structures of the five transition state structures involved in the IMDA reactions are highly similar to those found in the intermolecular processes. A relative interacting atomic energy (RIAE) analysis of Diels-Alder and IMDA reactions allows for the establishment of the substituent effects on the activation energies. Although the nucleophilic frameworks are destabilized, the electrophilic frameworks are further stabilized, resulting in a reduction in the activation energies. The present MEDT study demonstrates the remarkable electronic and energetic similarity between the intermolecular and intramolecular Diels-Alder reactions. Only the lower, unfavorable activation entropy associated with the latter renders it 10<sup>4</sup> times faster than the former.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092052","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The intramolecular Diels-Alder (IMDA) reactions of four substituted deca-1,3,9-trienes and one N-methyleneocta-5,7-dien-1-aminium with different electrophilic/nucleophilic activations have been studied within the Molecular Electron Density Theory (MEDT) and compared to their intermolecular processes. The topological analysis of the electron density and DFT-based reactivity indices reveal that substitution does not modify neither the electronic structure nor the reactivity of the reagents relative to those involved in the intermolecular processes. The analysis of the relative energies establishes that the accelerations found in the polar IMDA reactions follow the same trend as those found in the intermolecular processes. The geometries and the electronic structures of the five transition state structures involved in the IMDA reactions are highly similar to those found in the intermolecular processes. A relative interacting atomic energy (RIAE) analysis of Diels-Alder and IMDA reactions allows for the establishment of the substituent effects on the activation energies. Although the nucleophilic frameworks are destabilized, the electrophilic frameworks are further stabilized, resulting in a reduction in the activation energies. The present MEDT study demonstrates the remarkable electronic and energetic similarity between the intermolecular and intramolecular Diels-Alder reactions. Only the lower, unfavorable activation entropy associated with the latter renders it 104 times faster than the former.

分子内与分子间Diels-Alder反应:来自分子电子密度理论的见解。
采用分子电子密度理论(MEDT)研究了四个取代十-1,3,9-三烯和一个n-亚甲基八元-5,7-二烯-1-胺具有不同亲电/亲核活性的分子内Diels-Alder (IMDA)反应,并比较了它们的分子间反应过程。电子密度的拓扑分析和基于dft的反应性指数表明,相对于参与分子间过程的试剂,取代既没有改变电子结构,也没有改变试剂的反应性。相对能量的分析表明,极性IMDA反应的加速度与分子间反应的加速度具有相同的趋势。IMDA反应中涉及的五个过渡态结构的几何形状和电子结构与分子间过程中的结构高度相似。Diels-Alder反应和IMDA反应的相对相互作用原子能(RIAE)分析允许建立取代基对活化能的影响。虽然亲核框架不稳定,但亲电框架进一步稳定,导致活化能降低。本MEDT研究表明分子间和分子内Diels-Alder反应具有显著的电子和能量相似性。只有与后者相关的较低、不利的激活熵使其比前者快104倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信